Refine
Document Type
- Article (7)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Cancer (2)
- Neoplasms (2)
- Automated Tube Potential Selection (1)
- Biopsy (1)
- CT pulmonary angiography (1)
- CT radiation exposure (1)
- CT-guidance (1)
- Cancer Staging (1)
- Cancer staging (1)
- Chemoembolization (1)
Institute
- Medizin (7)
BACKGROUND: Evaluation of latest generation automated attenuation-based tube potential selection (ATPS) impact on image quality and radiation dose in contrast-enhanced chest-abdomen-pelvis computed tomography examinations for gynaecologic cancer staging.
METHODS: This IRB approved single-centre, observer-blinded retrospective study with a waiver for informed consent included a total of 100 patients with contrast-enhanced chest-abdomen-pelvis CT for gynaecologic cancer staging. All patients were examined with activated ATPS for adaption of tube voltage to body habitus. 50 patients were scanned on a third-generation dual-source CT (DSCT), and another 50 patients on a second-generation DSCT. Predefined image quality setting remained stable between both groups at 120 kV and a current of 210 Reference mAs. Subjective image quality assessment was performed by two blinded readers independently. Attenuation and image noise were measured in several anatomic structures. Signal-to-noise ratio (SNR) was calculated. For the evaluation of radiation exposure, CT dose index (CTDIvol) values were compared.
RESULTS: Diagnostic image quality was obtained in all patients. The median CTDIvol (6.1 mGy, range 3.9-22 mGy) was 40 % lower when using the algorithm compared with the previous ATCM protocol (median 10.2 mGy · cm, range 5.8-22.8 mGy). A reduction in potential to 90 kV occurred in 19 cases, a reduction to 100 kV in 23 patients and a reduction to 110 kV in 3 patients of our experimental cohort. These patients received significantly lower radiation exposure compared to the former used protocol.
CONCLUSION: Latest generation automated ATPS on third-generation DSCT provides good diagnostic image quality in chest-abdomen-pelvis CT while average radiation dose is reduced by 40 % compared to former ATPS protocol on second-generation DSCT.
Background: Computed tomography (CT) low-dose (LD) imaging is used to lower radiation exposure, especially in vascular imaging; in current literature, this is mostly on latest generation high-end CT systems.
Purpose: To evaluate the effects of reduced tube current on objective and subjective image quality of a 15-year-old 16-slice CT system for pulmonary angiography (CTPA).
Material and Methods: CTPA scans from 60 prospectively randomized patients (28 men, 32 women) were examined in this study on a 15-year-old 16-slice CT scanner system. Standard CT (SD) settings were 100 kV and 150 mAs, LD settings were 100 kV and 50 mAs. Attenuation of the pulmonary trunk, various anatomic landmarks, and image noise were quantitatively measured; contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) were calculated. Three independent blinded radiologists subjectively rated each image series using a 5-point grading scale.
Results: CT dose index (CTDI) in the LD series was 66.46% lower compared to the SD settings (2.49 ± 0.55 mGy versus 7.42 ± 1.17 mGy). Attenuation of the pulmonary trunk showed similar results for both series (SD 409.55 ± 91.04 HU; LD 380.43 HU ± 93.11 HU; P = 0.768). Subjective image analysis showed no significant differences between SD and LD settings regarding the suitability for detection of central and peripheral PE (central SD/LD, 4.88; intra-class correlation coefficients [ICC], 0.894/4.83; ICC, 0.745; peripheral SD/LD, 4.70; ICC, 0.943/4.57; ICC, 0.919; all P > 0.4).
Conclusion: The LD protocol, on a 15-year-old CT scanner system without current high-end hardware or post-processing tools, led to a dose reduction of approximately 67% with similar subjective image quality and delineation of central and peripheral pulmonary arteries.
Background: Computed-tomography-guided interventions are attractive for tissue sampling of paediatric tumor lesions; however, it comes with exposure to ionizing radiation. The aim of this study was to analyse the radiation dose, accuracy and speed of CT-guided interventions in paediatric patient cohort.
Methods: We retrospectively reviewed CT-guided interventions over a 10 -year period in 65 children. The intervention site consisted of bones in 38, chest (lung) in 15 and abdomen (liver, lymph nodes) in 12 cases. Radiation dose and duration of the procedures were analysed. The statistical analysis was performed using dedicated statistical software (BiAS 8.3.6 software, Epsilon Verlag, North Hasted).
Results: All interventions were performed successfully. Mean target access path to lesion within the patients was 6.0 cm (min 3.5 cm, max 11.2 cm). Time duration to complete intervention was 25:15 min (min 17:03 min, max 43:00 min). The dose-length product (DLP) of intervention scan was 29.5 mGy · cm (min 6 mGy · cm, max 85 mGy · cm) with the lowest dose for biopsies in the region of the chest (p = 0.04).
Conclusions: With justified indications, CT-guided paediatric interventions are safe, effective and can be performed both, with short intervention times and low radiation exposure.
Purpose: To determine the value of the 2D multiple-echo data image combination (MEDIC) sequence relative to the short-tau inversion recovery (STIR) sequence regarding the depiction of chondral lesions in the patellofemoral joint.
Materials and methods: During a period of 6 month patients with acute pain at the anterior aspect of the knee, joint effusion and suspected chondral lesion defect in the patellofemoral joint underwent MRI including axial MEDIC and STIR imaging. Patients with chondral lesions in the patellofemoral joint on at least one sequence were included. The MEDIC and STIR sequence were quantitatively compared regarding the patella cartilage-to-effusion contrast-to-noise ratio (CNR) and qualitatively regarding the depiction of chondral lesions independently scored by two radiologists on a 3-point scale (1 = not depicted; 2 = blurred depicted; 3 = clearly depicted) using the Wilcoxon-Mann-Whitney-Test. For the analysis of inter-observer agreement the Cohen's Weighted Kappa test was used.
Results: 30 of 58 patients (male: female, 21:9; age: 44 ± 12 yrs) revealed cartilage lesions (fissures, n = 5 including fibrillation; gaps, n = 15; delamination, n = 7; osteoarthritis, n = 3) and were included in this study. The STIR-sequence was significantly (p < 0.001) superior to the MEDIC-sequence regarding both, the patella cartilage-to-effusion CNR (mean CNR: 232 ± 61 vs. 40 ± 16) as well as the depiction of chondral lesion (mean score: 2.83 ± 0.4 vs. 1.75 ± 0.7) with substantial inter-observer agreement in the rating of both sequences (κ = 0.76–0.89).
Conclusion: For the depiction of chondral lesions in the patellofemoral joint, the axial STIR-sequence should be chosen in preference to the axial MEDIC-sequence.
Background: To evaluate survival data and local tumor control after transarterial chemoembolization in two groups with different embolization protocols for the treatment of HCC patients.
Methods: Ninty-nine patients (mean age: 63.6 years), 78 male (78.8%) with HCC were repeatedly treated with chemoembolization in 4-week-intervals. Eighty-eight patients had BCLC-Stage-B and in 11 patients, chemoembolization was performed for bridging (BCLC-Stage-A). In total, 667 chemoembolization treatments were performed (mean 6.7 treatments/patient). The administered chemotherapeutic agent included mitomycin. For embolization, lipiodol only (n = 51;51.5%; mean age 63.8 years; 38 male), or lipiodol plus degradable starch microspheres (DSM) (n = 48; 48.5%; mean age 63.4 years; 40 male) were used. The local tumor response was assessed by MRI using Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1). Patient survival times were evaluated using Kaplan-Meier curves and log-rank tests.
Results: The local tumor control in the lipiodol-group was: PR (partial response) in 11 (21.6%), SD (stable disease) in 32 (62.7%) and PD (progressive disease) in 8 cases (15.7%). In the lipiodol-DSM-group, PR was seen in 14 (29.2%), SD in 22 (45.8%), and PD in 12 (25.0%) individuals (p = 0.211). The median survival of patients after chemoembolization with lipiodol was 25 months and in the lipiodol-DSM-group 28 months (p = 0.845).
Conclusion: Our data suggest a slight benefit of the use of lipiodol and DSM in comparison of using lipiodol only for chemoembolization of HCC in terms of local tumor control and survival data, this trend did not reach the level of significance.
Objectives: The aim of our study was to find out how much energy is applicable in second-generation dual source high-pitch computed tomography (CT) in imaging of the abdomen.
Materials and methods: We examined an upper abdominal phantom using a Somatom Definition Flash CT-Scanner (Siemens, Forchheim, Germany). The study protocol consisted of a scan-series at 100 kV and 120 kV. In each scan series we started with a pitch of 3.2 and reduced it in steps of 0.2, until a pitch of 1.6 was reached. The current was adjusted to the maximum the scanner could achieve. Energy values, image noise, image quality, and radiation exposure were evaluated.
Results: For a pitch of 3.2 the maximum applicable current was 142 mAs at 120 kV and in 100 kV the maximum applicable current was 114 mAs. For conventional abdominal imaging, current levels of 200 to 260 mAs are generally used. To achieve similar current levels, we had to decrease the pitch to 1.8 at 100 kV - at this pitch we could perform our imaging at 204 mAs. At a pitch of 2.2 in 120 kV we could apply a current of 206 mAs.
Conclusion: We conclude our study by stating that if there is a need for a higher current, we have to reduce the pitch. In a high-pitch dual source CT, we always have to remember where our main focus is, so we can adjust the pitch to the energy we need in the area of the body that has to be imaged, to find answers to the clinical question being raised.
Background: Evaluation of automated attenuation-based tube potential selection and its impact on image quality and radiation dose in CT (computed tomography) examinations for cancer staging.
Methods: A total of 110 (59 men, 51 women) patients underwent chest-abdomen-pelvis CT examinations; 55 using a fixed tube potential of 120 kV/current of 210 Reference mAs (using CareDose4D), and 55 using automated attenuation-based tube potential selection (CAREkV) also using a current of 210 Reference mAs. This evaluation was performed as a single-centre, observer-blinded retrospective analysis. Image quality was assessed by two readers in consensus. Attenuation, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured or calculated for objective image evaluation. For the evaluation of radiation exposure, dose-length-product (DLP) values were compared and Size-specific dose estimates (SSDE) values were calculated.
Results: Diagnostic image quality was obtained from all patients. The median DLP (703.5 mGy · cm, range 390–2203 mGy · cm) was 7.9% lower when using the algorithm compared with the standard 120 kV protocol (median 756 mGy · cm, range 345–2267 mGy · cm). A reduction in potential to 100 kV occurred in 32 cases; therefore, these patients received significantly lower radiation exposure compared with the 120 kV protocol.
Conclusion: Automated attenuation-based tube potential selection produces good diagnostic image quality in chest-abdomen-pelvis CT and reduces the patient’s overall radiation dose by 7.9% compared to the standard 120 kV protocol.