Refine
Year of publication
Document Type
- Article (20)
Language
- English (20)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Keywords
- CAKUT (1)
- Chemical composition (1)
- Demolition emissions (1)
- PM10 (1)
- SLC20A1 (1)
- Size distribution (1)
- Ultrafine particles (1)
- Urban aerosol (1)
- bladder exstrophy-epispadias complex (1)
- cloacal malformation (1)
Institute
We have sampled atmospheric ice nuclei (IN) and aerosol in Germany and in Israel during spring 2010. IN were analyzed by the static vapor diffusion chamber FRIDGE, as well as by electron microscopy. During the Eyjafjallajökull volcanic eruption of April 2010 we have measured the highest ice nucleus number concentrations (>600 l−1) in our record of 2 yr of daily IN measurements in central Germany. Even in Israel, located about 5000 km away from Iceland, IN were as high as otherwise only during desert dust storms. The fraction of aerosol activated as ice nuclei at −18 °C and 119% rhice and the corresponding area density of ice-active sites per aerosol surface were considerably higher than what we observed during an intense outbreak of Saharan dust over Europe in May 2008.
Pure volcanic ash accounts for at least 53–68% of the 239 individual ice nucleating particles that we collected in aerosol samples from the event and analyzed by electron microscopy. Volcanic ash samples that had been collected close to the eruption site were aerosolized in the laboratory and measured by FRIDGE. Our analysis confirms the relatively poor ice nucleating efficiency (at −18 °C and 119% ice-saturation) of such "fresh" volcanic ash, as it had recently been found by other workers. We find that both the fraction of the aerosol that is active as ice nuclei as well as the density of ice-active sites on the aerosol surface are three orders of magnitude larger in the samples collected from ambient air during the volcanic peaks than in the aerosolized samples from the ash collected close to the eruption site. From this we conclude that the ice-nucleating properties of volcanic ash may be altered substantially by aging and processing during long-range transport in the atmosphere, and that global volcanism deserves further attention as a potential source of atmospheric ice nuclei.
Explosive volcanism affects weather and climate. Primary volcanic ash particles which act as ice nuclei (IN) can modify the phase and properties of cold tropospheric clouds. During the Eyjafjallajökull volcanic eruption we have measured the highest ice nucleus number concentrations (>600 L) in our record of 2 years of daily IN measurements in central Germany. Even in Israel, located about 5000 km away from Iceland, IN were as high as otherwise only during desert dust storms. These measurements are the only ones available on the properties of IN in the Eyjafjallajökull plume. The measured high concentrations and high activation temperature (−8 °C) point to an important impact of volcanic ash on microphysical and radiative properties of clouds through enhanced glaciation.
We present a study characterizing aerosol particles resulting from a skyscraper blasting. High mass concentrations with a maximum of 844.9 μg m-3 were present for a short time period of approximately 15 minutes. They result in a day mean of 32.6 μg m-3 compared to a 27.6 μg m-3 background not exceeding the 50 μg m-3 EU maximum permissive value. The increase in particle number concentration was less pronounced with a maximum concentration of 6.9 ⋅ 104 cm-3 compared to the local background value of 1.8 ⋅ 104 cm-3. The size-resolved number concentration shows a single mode of ultrafine particles at approximately 93 nm. The spatial distribution of deposited dust was investigated with Bergerhoff glass collection vessels, showing a decrease with distance. In the deposited dust samples the concentrations of twelve metals was determined, non of them exceeded the regional background concentrations significantly. The chemical composition of individual particles emitted by the demolition was studied by Scanning Electron Microscopy. They were mainly concrete and steel particles, with 60% calcium carbonates, 19% calcium sulfates, 19% silicates and 2% steel. In energy-dispersive X-Ray Spectroscopy, no fibers like asbestos were observed. Using a broad spectrum of instruments and methods, we obtain comprehensive characterization of the particles emitted by the demolition.
Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.
The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.
Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exstrophy. Furthermore, we performed immunohistochemistry of an unaffected 6-week-old human embryo and detected SLC20A1 in the urinary tract and the abdominal midline, structures implicated in the pathogenesis of cloacal exstrophy. Additionally, we resequenced SLC20A1 in 690 individuals with bladder exstrophy-epispadias complex (BEEC) including 84 individuals with cloacal exstrophy. We identified two additional monoallelic de novo variants. One was identified in a case-parent trio with classic bladder exstrophy, and one additional novel de novo variant was detected in an affected mother who transmitted this variant to her affected son. To study the potential cellular impact of SLC20A1 variants, we expressed them in HEK293 cells. Here, phosphate transport was not compromised, suggesting that it is not a disease mechanism. However, there was a tendency for lower levels of cleaved caspase-3, perhaps implicating apoptosis pathways in the disease. Our results suggest SLC20A1 is involved in urinary tract and urorectal development and implicate SLC20A1 as a disease-gene for BEEC.
Recently significant advances have been made in the collection, detection, and characterization of ice nucleating particles (INP). Ice nuclei are particles that facilitate the heterogeneous formation of ice within the atmospheric aerosol by lowering the free energy barrier to spontaneous nucleation and growth of ice from atmospheric water and/or vapor. The Frankfurt isostatic diiffusion chamber (FRIDGE) is an INP collection and offline detection system that has become widely deployed and shows additional potential for ambient measurements. Since its initial development FRIDGE has gone through several iterations and improvements. Here we describe improvements that have been made in the collection and analysis techniques. We detail the uncertainties inherent in the measurement method, and suggest a systematic method of error analysis for FRIDGE measurements. Thus what is presented herein should serve as a foundation for the dissemination of all current and future measurements using FRIDGE instrumentation.
Recently significant advances have been made in the collection, detection and characterization of ice nucleating particles (INPs). Ice nuclei are particles that facilitate the heterogeneous formation of ice within the atmospheric aerosol by lowering the free energy barrier to spontaneous nucleation and growth of ice from atmospheric water and/or vapor. The Frankfurt isostatic diffusion chamber (FRankfurt Ice nucleation Deposition freezinG Experiment: FRIDGE) is an INP collection and offline detection system that has become widely deployed and shows additional potential for ambient measurements. Since its initial development FRIDGE has gone through several iterations and improvements. Here we describe improvements that have been made in the collection and analysis techniques. We detail the uncertainties inherent in the measurement method and suggest a systematic method of error analysis for FRIDGE measurements. Thus what is presented herein should serve as a foundation for the dissemination of all current and future measurements using FRIDGE instrumentation.
Surface measurements of aerosol and ice nuclei (IN) at a Central European mountain site during an episode of dust transport from the Sahara are presented. Ice nuclei were sampled by electrostatic precipitation on silicon wafers and were analyzed in an isothermal static vapor diffusion chamber. The transport of mineral dust is simulated by the Eulerian regional dust model DREAM. Ice nuclei and mineral dust are significantly correlated, in particular IN number concentration and aerosol surface area. The ice nucleating characteristics of the aerosol as analyzed with respect to temperature and supersaturation are similar during the dust episode than during the course of the year. This suggests that dust may be a main constituent of ice nucleating aerosols in Central Europe.
Surface measurements of aerosol and ice nuclei (IN) at a Central European mountain site during an episode of dust transport from the Sahara are presented. Transport is simulated by the Eulerian regional dust model DREAM. Ice nuclei and mineral dust are significantly correlated. The highest correlation is found between IN concentration and aerosol surface area. The ice nucleating characteristics of the aerosol with respect to temperature and supersaturation are similar during the dust episode than during the course of the year. This suggests that dust is always a dominant constituent of ice nucleating aerosols in Central Europe.