### Refine

#### Document Type

- Article (4)

#### Language

- English (4)

#### Has Fulltext

- yes (4)

#### Is part of the Bibliography

- no (4)

#### Institute

In 1998 the German Universities of Kassel and Giessen organised a workshop on water and solute transport in large drainage basins. The workshop focused on analysing and summarising the state of research, existing problems and perspectives in this research area. It was the second of a series of annual workshops since 1997 that became an important discussion forum for the German-speaking research community in the field of hydrological modelling. Now the 11th Workshop on Large-scale Hydrological Modelling referred to the same questions as posed in 1998 in order to evaluate the developments and advances of the last ten years. Based on keynote presentations, the workshop focused on discussion in working groups where also posters were presented. This volume of "Advances in Geosciences" comprises seven papers referring to the poster contributions. At the end of the volume, an overview paper summarises the outcome of the workshop presentations and discussions (Doll et al.). ...

This paper investigates the value of observed river discharge data for global-scale hydrological modeling of a number of flow characteristics that are e.g. required for assessing water resources, flood risk and habitat alteration of aquatic ecosystems. An improved version of the WaterGAP Global Hydrology Model (WGHM) was tuned against measured discharge using either the 724-station dataset (V1) against which former model versions were tuned or an extended dataset (V2) of 1235 stations. WGHM is tuned by adjusting one model parameter (γ) that affects runoff generation from land areas in order to fit simulated and observed long-term average discharge at tuning stations. In basins where γ does not suffice to tune the model, two correction factors are applied successively: the areal correction factor corrects local runoff in a basin and the station correction factor adjusts discharge directly the gauge. Using station correction is unfavorable, as it makes discharge discontinuous at the gauge and inconsistent with runoff in the upstream basin. The study results are as follows. (1) Comparing V2 to V1, the global land area covered by tuning basins increases by 5% and the area where the model can be tuned by only adjusting γ increases by 8%. However, the area where a station correction factor (and not only an areal correction factor) has to be applied more than doubles. (2) The value of additional discharge information for representing the spatial distribution of long-term average discharge (and thus renewable water resources) with WGHM is high, particularly for river basins outside of the V1 tuning area and in regions where the refined dataset provides a significant subdivision of formerly extended tuning basins (average V2 basin size less than half the V1 basin size). If the additional discharge information were not used for tuning, simulated long-term average discharge would differ from the observed one by a factor of, on average, 1.8 in the formerly untuned basins and 1.3 in the subdivided basins. The benefits tend to be higher in semi-arid and snow-dominated regions where the model is less reliable than in humid areas and refined tuning compensates for uncertainties with regard to climate input data and for specific processes of the water cycle that cannot be represented yet by WGHM. Regarding other flow characteristics like low flow, inter-annual variability and seasonality, the deviation between simulated and observed values also decreases significantly, which, however, is mainly due to the better representation of average discharge but not of variability. (3) The choice of the optimal sub-basin size for tuning depends on the modeling purpose. While basins over 60 000 km2 are performing best, improvements in V2 model performance are strongest in small basins between 9000 and 20 000 km2, which is primarily related to a low level of V1 performance. Increasing the density of tuning stations provides a better spatial representation of discharge, but it also decreases model consistency, as almost half of the basins below 20 000 km2 require station correction.

Flow velocity in rivers has a major impact on residence time of water and thus on high and low water as well as on water quality. For global scale hydrological modeling only very limited information is available for simulating flow velocity. Based on the Manning-Strickler equation, a simple algorithm to model temporally and spatially variable flow velocity was developed with the objective of improving flow routing in the global hydrological model of Water- GAP. An extensive data set of flow velocity measurements in US rivers was used to test and to validate the algorithm before integrating it into WaterGAP. In this test, flow velocity was calculated based on measured discharge and compared to measured velocity. Results show that flow velocity can be modeled satisfactorily at selected river cross sections. It turned out that it is quite sensitive to river roughness, and the results can be optimized by tuning this parameter. After the validation of the approach, the tested flow velocity algorithm has been implemented into the WaterGAP model. A final validation of its effects on the model results is currently performed.

his paper investigates the value of observed river discharge data for global-scale hydrological modeling of a number of flow characteristics that are required for assessing water resources, flood risk and habitat alteration of aqueous ecosystems. An improved version of WGHM (WaterGAP Global Hydrology Model) was tuned in a way that simulated and observed long-term average river discharges at each station become equal, using either the 724-station dataset (V1) against which former model versions were tuned or a new dataset (V2) of 1235 stations and often longer time series. WGHM is tuned by adjusting one model parameter (γ) that affects runoff generation from land areas, and, where necessary, by applying one or two correction factors, which correct the total runoff in a sub-basin (areal correction factor) or the discharge at the station (station correction factor). The study results are as follows. (1) Comparing V2 to V1, the global land area covered by tuning basins increases by 5%, while the area where the model can be tuned by only adjusting γ increases by 8% (546 vs. 384 stations). However, the area where a station correction factor (and not only an areal correction factor) has to be applied more than doubles (389 vs. 93 basins), which is a strong drawback as use of a station correction factor makes discharge discontinuous at the gauge and inconsistent with runoff in the basin. (2) The value of additional discharge information for representing the spatial distribution of long-term average discharge (and thus renewable water resources) with WGHM is high, particularly for river basins outside of the V1 tuning area and for basins where the average sub-basin area has decreased by at least 50% in V2 as compared to V1. For these basins, simulated long-term average discharge would differ from the observed one by a factor of, on average, 1.8 and 1.3, respectively, if the additional discharge information were not used for tuning. The value tends to be higher in semi-arid and snow-dominated regions where hydrological models are less reliable than in humid areas. The deviation of the other simulated flow characteristics (e.g. low flow, inter-annual variability and seasonality) from the observed values also decreases significantly, but this is mainly due to the better representation of average discharge but not of variability. (3) The optimal sub-basin size for tuning depends on the modeling purpose. On the one hand, small basins between 9000 and 20 000 km2 show a much stronger improvement in model performance due to tuning than the larger basins, which is related to the lower model performance (with and without tuning), with basins over 60 000 km2 performing best. On the other hand, tuning of small basins decreases model consistency, as almost half of them require a station correction factor.