Refine
Year of publication
Language
- English (36)
Has Fulltext
- yes (36)
Is part of the Bibliography
- no (36)
Keywords
- 3D orientation pattern of ciliary bundles (1)
- ACLF (1)
- ADGRE1 (1)
- AZD7762 (1)
- Action Plan for Medication Safety (1)
- Angiogenesis (1)
- Angiography (1)
- Automated sRNA analysis (1)
- Bladder cancer (1)
- Blood (1)
Institute
- Medizin (28)
- Biowissenschaften (3)
- Pharmazie (2)
- Physik (2)
Simple Summary: In patients with myeloproliferative neoplasms (MPN) and in patients with kidney dysfunction, a higher rate of thrombosis has been reported compared with the general population. Furthermore, MPN patients are more prone to develop kidney dysfunction. In our study, we assessed the importance of specific risk factors for kidney dysfunction and thrombosis in MPN patients. We found that the rate of thrombosis is correlated with the degree of kidney dysfunction, especially in myelofibrosis. Significant associations for kidney dysfunction included arterial hypertension, MPN treatment, and increased inflammation, and those for thrombosis comprised arterial hypertension, non-excessive platelet counts, and antithrombotic therapy. The identified risk factor associations varied between MPN subtypes. Our data suggest that kidney dysfunction in MPN patients is associated with an increased risk of thrombosis, mandating closer monitoring, and, possibly, early thromboprophylaxis.
Abstract: Inflammation-induced thrombosis represents a severe complication in patients with myeloproliferative neoplasms (MPN) and in those with kidney dysfunction. Overlapping disease-specific attributes suggest common mechanisms involved in MPN pathogenesis, kidney dysfunction, and thrombosis. Data from 1420 patients with essential thrombocythemia (ET, 33.7%), polycythemia vera (PV, 38.5%), and myelofibrosis (MF, 27.9%) were extracted from the bioregistry of the German Study Group for MPN. The total cohort was subdivided according to the calculated estimated glomerular filtration rate (eGFR, (mL/min/1.73 m2)) into eGFR1 (≥90, 21%), eGFR2 (60–89, 56%), and eGFR3 (<60, 22%). A total of 29% of the patients had a history of thrombosis. A higher rate of thrombosis and longer MPN duration was observed in eGFR3 than in eGFR2 and eGFR1. Kidney dysfunction occurred earlier in ET than in PV or MF. Multiple logistic regression analysis identified arterial hypertension, MPN treatment, increased uric acid, and lactate dehydrogenase levels as risk factors for kidney dysfunction in MPN patients. Risk factors for thrombosis included arterial hypertension, non-excessive platelet counts, and antithrombotic therapy. The risk factors for kidney dysfunction and thrombosis varied between MPN subtypes. Physicians should be aware of the increased risk for kidney disease in MPN patients, which warrants closer monitoring and, possibly, early thromboprophylaxis.
Background: Cichlid fishes show considerable diversity in swim bladder morphology. In members of the subfamily Etroplinae, the connection between anterior swim bladder extensions and the inner ears enhances sound transmission and translates into an improved hearing ability. We tested the hypothesis that those swim bladder modifications coincide with differences in inner ear morphology and thus compared Steatocranus tinanti (vestigial swim bladder), Hemichromis guttatus (large swim bladder without extensions), and Etroplus maculatus (intimate connection between swim bladder and inner ears).
Methodology and results: We applied immunostaining together with confocal imaging and scanning electron microscopy for the investigation of sensory epithelia, and high-resolution, contrast-enhanced microCT imaging for characterizing inner ears in 3D, and evaluated otolith dimensions. Compared to S. tinanti and H. guttatus, inner ears of E. maculatus showed an enlargement of all three maculae, and a particularly large lacinia of the macula utriculi. While our analysis of orientation patterns of ciliary bundles on the three macula types using artificially flattened maculae uncovered rather similar orientation patterns of ciliary bundles, interspecific differences became apparent when illustrating the orientation patterns on the 3D models of the maculae: differences in the shape and curvature of the lacinia of the macula utriculi, and the anterior arm of the macula lagenae resulted in an altered arrangement of ciliary bundles.
Conclusions: Our results imply that improved audition in E. maculatus is associated not only with swim bladder modifications but also with altered inner ear morphology. However, not all modifications in E. maculatus could be connected to enhanced auditory abilities, and so a potential improvement of the vestibular sense, among others, also needs to be considered. Our study highlights the value of analyzing orientation patterns of ciliary bundles in their intact 3D context in studies of inner ear morphology and physiology.
Background: Fishes show an amazing diversity in hearing abilities, inner ear structures, and otolith morphology. Inner ear morphology, however, has not yet been investigated in detail in any member of the diverse order Cyprinodontiformes. We, therefore, studied the inner ear of the cyprinodontiform freshwater fish Poecilia mexicana by analyzing the position of otoliths in situ, investigating the 3D structure of sensory epithelia, and examining the orientation patterns of ciliary bundles of the sensory hair cells, while combining μ-CT analyses, scanning electron microscopy, and immunocytochemical methods. P. mexicana occurs in different ecotypes, enabling us to study the intra-specific variability (on a qualitative basis) of fish from regular surface streams, and the Cueva del Azufre, a sulfidic cave in southern Mexico.
Results: The inner ear of Poecilia mexicana displays a combination of several remarkable features. The utricle is connected rostrally instead of dorso-rostrally to the saccule, and the macula sacculi, therefore, is very close to the utricle. Moreover, the macula sacculi possesses dorsal and ventral bulges. The two studied ecotypes of P. mexicana showed variation mainly in the shape and curvature of the macula lagenae, in the curvature of the macula sacculi, and in the thickness of the otolithic membrane.
Conclusions: Our study for the first time provides detailed insights into the auditory periphery of a cyprinodontiform inner ear and thus serves a basis—especially with regard to the application of 3D techniques—for further research on structure-function relationships of inner ears within the species-rich order Cyprinodontiformes. We suggest that other poeciliid taxa, or even other non-poeciliid cyprinodontiforms, may display similar inner ear morphologies as described here.
Most sRNA biogenesis mechanisms involve either RNAseIII cleavage or ping-pong amplification by different Piwi proteins harboring slicer activity. Here, we follow the question why the mechanism of transgene-induced silencing in the ciliate Paramecium needs both Dicer activity and two Ptiwi proteins. This pathway involves primary siRNAs produced from non-translatable transgenes and secondary siRNAs from endogenous remote loci. Our data does not indicate any signatures from ping-pong amplification but Dicer cleavage of long dsRNA. We show that Ptiwi13 and 14 have different preferences for primary and secondary siRNAs but do not load them mutually exclusive. Both Piwis enrich for antisense RNAs and Ptiwi14 loaded siRNAs show a 5′-U signature. Both Ptiwis show in addition a general preference for Uridine-rich sRNAs along the entire sRNA length. Our data indicates both Ptiwis and 2’-O-methylation to contribute to strand selection of Dicer cleaved siRNAs. This unexpected function of two distinct vegetative Piwis extends the increasing knowledge of the diversity of Piwi functions in diverse silencing pathways. As both Ptiwis show differential subcellular localisation, Ptiwi13 in the cytoplasm and Ptiwi14 in the vegetative macronucleus, we conclude that cytosolic and nuclear silencing factors are necessary for efficient chromatin silencing.
Background & Aims: In ACLF patients, an adequate risk stratification is essential, especially for liver transplant allocation, since ACLF is associated with high short-term mortality. The CLIF-C ACLF score is the best prognostic model to predict outcome in ACLF patients. While lung failure is generally regarded as signum malum in ICU care, this study aims to evaluate and quantify the role of pulmonary impairment on outcome in ACLF patients.
Methods: In this retrospective study, 498 patients with liver cirrhosis and admission to IMC/ICU were included. ACLF was defined according to EASL-CLIF criteria. Pulmonary impairment was classified into three groups: unimpaired ventilation, need for mechanical ventilation and defined pulmonary failure. These factors were analysed in different cohorts, including a propensity score-matched ACLF cohort.
Results: Mechanical ventilation and pulmonary failure were identified as independent risk factors for increased short-term mortality. In matched ACLF patients, the presence of pulmonary failure showed the highest 28-day mortality (83.7%), whereas mortality rates in ACLF with mechanical ventilation (67.3%) and ACLF without pulmonary impairment (38.8%) were considerably lower (p < .001). Especially in patients with pulmonary impairment, the CLIF-C ACLF score showed poor predictive accuracy. Adjusting the CLIF-C ACLF score for the grade of pulmonary impairment improved the prediction significantly.
Conclusions: This study highlights that not only pulmonary failure but also mechanical ventilation is associated with worse prognosis in ACLF patients. The grade of pulmonary impairment should be considered in the risk assessment in ACLF patients. The new score may be useful in the selection of patients for liver transplantation.
The unicellular ciliate Paramecium contains a large vegetative macronucleus with several unusual characteristics, including an extremely high coding density and high polyploidy. As macronculear chromatin is devoid of heterochromatin, our study characterizes the functional epigenomic organization necessary for gene regulation and proper Pol II activity. Histone marks (H3K4me3, H3K9ac, H3K27me3) reveal no narrow peaks but broad domains along gene bodies, whereas intergenic regions are devoid of nucleosomes. Our data implicate H3K4me3 levels inside ORFs to be the main factor associated with gene expression, and H3K27me3 appears in association with H3K4me3 in plastic genes. Silent and lowly expressed genes show low nucleosome occupancy, suggesting that gene inactivation does not involve increased nucleosome occupancy and chromatin condensation. Because of a high occupancy of Pol II along highly expressed ORFs, transcriptional elongation appears to be quite different from that of other species. This is supported by missing heptameric repeats in the C-terminal domain of Pol II and a divergent elongation system. Our data imply that unoccupied DNA is the default state, whereas gene activation requires nucleosome recruitment together with broad domains of H3K4me3. In summary, gene activation and silencing in Paramecium run counter to the current understanding of chromatin biology.
The unicellular ciliate Paramecium contains a large vegetative macronucleus with several unusual characteristics including an extremely high coding density and high polyploidy. As macronculear chromatin is devoid of heterochromatin our study characterizes the functional epigenomic organisation necessary for gene regulation and proper PolII activity. Histone marks (H3K4me3, H3K9ac, H3K27me3) revealed no narrow peaks but broad domains along gene bodies, whereas intergenic regions were devoid of nucleosomes. Our data implicates H3K4me3 levels inside ORFs to be the main factor to associate with gene expression and H3K27me3 appears to occur as a bistable domain with H3K4me3 in plastic genes. Surprisingly, silent and lowly expressed genes show low nucleosome occupancy suggesting that gene inactivation does not involve increased nucleosome occupancy and chromatin condensation. Due to a high occupancy of Pol II along highly expressed ORFs, transcriptional elongation appears to be quite different to other species. This is supported by missing heptameric repeats in the C-terminal domain of Pol II and a divergent elongation system. Our data implies that unoccupied DNA is the default state, whereas gene activation requires nucleosome recruitment together with broad domains of H3K4me3. This could represent a buffer for paused Pol II along ORFs in absence of elongation factors of higher eukaryotes.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Glucocorticoid-induced gene transcription has been shown to be mediated by coactivators bound to the glucocorticoid receptor (GR). The glucocorticoid antagonist RU486 interferes with the steroid-mediated activation and can also exhibit partial agonist activity, a response in which corepressors have been implicated. Here we have shown that deletion of the N terminus of GR totally abolishes the agonist activity of RU486. Furthermore, we have demonstrated that corepressors bind directly to the RU486-bound GR as determined by glutathione S-transferase pull-down, mammalian two-hybrid assay, and coimmunoprecipitation. Fine mapping of the interaction regions within GR and the corepressor NCoR reveals a complex interaction profile that involves a number of domains in each protein. Notably, the N and the C termini of GR are both involved in corepressor binding. Thus, the N terminus of GR is a major determinant for RU486-dependent NCoR interaction as well as for RU486-mediated agonist activity.
Aim: Pharmacoresistance is a major burden in epilepsy treatment. We aimed to identify genetic biomarkers in response to specific antiepileptic drugs (AEDs) in genetic generalized epilepsies (GGE). Materials & methods: We conducted a genome-wide association study (GWAS) of 3.3 million autosomal SNPs in 893 European subjects with GGE – responsive or nonresponsive to lamotrigine, levetiracetam and valproic acid. Results: Our GWAS of AED response revealed suggestive evidence for association at 29 genomic loci (p <10-5) but no significant association reflecting its limited power. The suggestive associations highlight candidate genes that are implicated in epileptogenesis and neurodevelopment. Conclusion: This first GWAS of AED response in GGE provides a comprehensive reference of SNP associations for hypothesis-driven candidate gene analyses in upcoming pharmacogenetic studies.