Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- anti-angiogenic therapy (1)
- glioblastoma (1)
- macrophage polarization (1)
- therapy resistance (1)
- tumor angiogenesis (1)
Institute
- Medizin (2)
Background: Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required. Methodology/Principal Findings: Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression. Conclusions/Significance: We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes—DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1—that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play an important role in the development of different HNs.
Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti‐angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin‐2 (Ang‐2) as a potential target in both naive and bevacizumab‐treated glioblastoma. Ang‐2 expression was absent in normal human brain endothelium, while the highest Ang‐2 levels were observed in bevacizumab‐treated GBM. In a murine GBM model, VEGF blockade resulted in endothelial upregulation of Ang‐2, whereas the combined inhibition of VEGF and Ang‐2 leads to extended survival, decreased vascular permeability, depletion of tumor‐associated macrophages, improved pericyte coverage, and increased numbers of intratumoral T lymphocytes. CD206+ (M2‐like) macrophages were identified as potential novel targets following anti‐angiogenic therapy. Our findings imply a novel role for endothelial cells in therapy resistance and identify endothelial cell/myeloid cell crosstalk mediated by Ang‐2 as a potential resistance mechanism. Therefore, combining VEGF blockade with inhibition of Ang‐2 may potentially overcome resistance to bevacizumab therapy.