Refine
Year of publication
- 2006 (1)
Document Type
- Doctoral Thesis (1)
Language
- German (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
Der Einfluss von Stress auf einen Organismus führt zur Expression molekularer Chaperone unterschiedlichster Hitzestressprotein-(Hsp)-Familien, die die Zellen vor stressbedingten Schäden schützen. Mitglieder der Hsp2O-Familie (kurz small Hsps, sHsps) besitzen ein Molekulargewicht von 12-43 kDa und sind durch einen zentralen, evolutiv konservierten Bereich, der als alpha-Crystallin-Domäne (ACD) bezeichnet wird, gekennzeichnet. Diese besteht größtenteils aus beta-Strängen, während die flankierenden Bereiche hingegen variabel in Länge, Sequenz sowie Sekundärstrukturen sind. sHsps bilden mit Hilfe der Sekundärstrukturen oligomere Komplexe aus. Darüber hinaus besitzen sie eine ATP-unabhängige Chaperonaktivität und spielen beim Schutz thermosensitiver Proteine eine wichtige Rolle. In Pflanzenzellen führt ein anhaltender Hitzestress zur Ansammlung von sHsps zu so genannten Hitzestressgranula (HSGs), die sich wiederum zu größeren HSG-Komplexen (HSCs) organisieren. Eine mögliche Funktion von HSCs ist der Schutz zellulärer denaturierter Proteine vor einer irreversiblen Aggregation. Durch deren Bindung mittels sHsps und Eingliederung in den HSC-Verband werden die denaturierten Proteine in einem faltungskompetenten Zustand gehalten. Schließlich können die mit den HSCs assoziierten ATP-abhängigen Hsp-Maschinen (z.B. Hsp70/40, Hsp100) die sHsp-gebundenen Substrate renaturieren. Wie in der vorliegenden Arbeit dargestellt, weisen Pflanzen die höchste soweit bekannte Anzahl von sHsp-Genen auf. Die korrespondierenden Proteine werden anhand ihrer Primärsequenz und subzellulären Lokalisation in verschiedene Klassen eingeteilt: sHsps der Klassen CI und CI1 befinden sich im nucleo-cytoplasmatische Raum, sHsps der Klasse M in Mitochondrien, der Klasse P in den Plastiden und der Klasse ER im endoplasmatischen Reticulum sowie im Golgi-Apparat. Da das Genom von Arabidopsis thaliana das erste komplett sequenzierte pflanzliche Genom ist, eignete sich dieser Modelorganismus zur Identifikation aller sHsp kodierenden Gene. Der Einsatz von Protein- und Nukleotidsequenzen bereits bekannter pflanzlicher sHsps als Suchkriterium in der NCBI-Datenbank (BLASTP und BLASTN), ergab die ldentifikation 19 putativer sHsp kodierender Gene, von denen erstaunlicheweise 13 bislang noch nicht bekannt waren. Proteinsequenzvergleiche ergaben, dass 7 der neu entdeckten sHsps nicht den typischen Klassen zugehörig sind. Dies bildete den Ausgangspunkt für deren nähere Analyse und Charakterisierung im Rahmen des ,,Functional Genomics": (1) Lokalisationsstudien I: Myc-Epitop markierte sHsp-Konstrukte wurden transient in Tabak-Mesophyllprotoplasten transformiert. Über Lokalisationsstudien per lmmunfluoreszenz konnten diese Proteine in tatsächlich 7 neu definierte sHsp Klassen eingeteilt werden. Interessanteweise werden die Vertreter dieser neuen Klassen von jeweils nur einem Gen kodiert. Die Vertreter der Klassen CI11 bis CVII lokalisieren im nucleo-cytoplasmatischen Kompartiment. Ferner bewiesen die Kodetektionen von organellären Markerproteinen, dass Klasse MII sHsps in die Mitochondrien und Mitglieder der Klasse Po in die Peroxisomen transportiert werden. Dies stimmte überein mit der Vorhersage von organellären Signalsequenzen. (2) Lokalisationsstudien II: Frühere Studien zeigten, dass sHsps der Klassen CI und CII unter Hitzestressbedingungen HSCs ausbilden. Wahrscheinlich fungieren Klasse CII sHsps als Grundgerüst für die HSC-Bildung und rekrutieren sHsps der Klasse CI in diese Multichaperonkomplexe. Die Proteine (Myc-markiert) Hsp17.4-CIII, Hsp15.4-CIV, Hsp18.5-CVI und Hsp14.7-CVII wurden unter Hitzestressbedingungen in endogene HSCs von Tabak-Mesophyllprotoplasten eingegliedert. Dieses Phänomen bleibt auf die genannten sHsp Klassen beschränkt, da weder Hsp21.7-CV, noch die organellären Proteine Hsp26.5-MI1 sowie Hsp15.7-Po in HSCs detektiert wurden. (3) Das sHsp-lnteraktom: Im Gegensatz zu früheren Studien, konnte in der vorliegenden Arbeit eine lnteraktion zwischen sHsps verschiedener Klassen zum ersten Mal im Hefe-Zwei-Hybrid-System sowie über Pull-down und nativer SDS-Gelelektrophorese detektiert werden. Am Beispiel eines Klasse CIII sHsps wurde gezeigt, dass die lnteraktion mit sHsps anderer Klassen zu einer Heterooligomerisierung führt. Dies wiederum hat eine nachhaltige Beeinflussung der intrazellulären Lokalisation der sHsps zur Folge. (4) Darüber hinaus ist für sHsps der Klasse CIII typisch, dass sie aufgrund einer Kernlokalisationssequenz innerhalb der ACD in den Nukleus transportiert werden. Im Vergleich zu sHsps der Klassen CI und CII, die Oligomere Strukturen von 220-230 kDa ausbilden, assemblieren sHsp-Monomere der Klasse CIII zu hochmolekularen Komplexen im Bereich von 1 MDa. (5) Das sHsp-Transkriptom: Durch RT-PCR-Analysen und Auswertung der öffentlich zugänglichen Microarray-Daten des AtGenExpress Konsortiums, konnte die Expression aller sHsps kodierenden Gene im Arabidopsis Genom auf transkriptioneller Ebene analysiert werden. Es zeigte sich, dass neben Hitzestress auch der Einfluss anderer abiotischer Stressoren, wie U. a. oxidativer stress und UV-B Bestrahlung, zu einer Akkumulation von sHsp-Transkripten führt. Ferner werden einige sHsps in bestimmten Entwicklungsstufen bzw. Organen, wie z.B. Blüten, Blättern und Samen, unabhängig von Stresseinflüssen exprimiert. (6) Funktionelle Analysen: Ein seminatives in vitro Chaperontestsystem, in dem Luciferase als thermosensitives Modelsubstrat eingesetzt wird, wurde herangezogen, um ausgesuchte sHsps bezüglich ihrer möglichen Chaperonfunktion zu testen. In Abhängigkeit der rekombinant hergestellten Proteine Hsp18.5-CVI, Hsp26.5-MII und Hsp15.7-Po konnte eine verminderte Aggregation der Luciferase unter Hitzestresseinwirkung und eine darauf folgende erhöhte Renaturierung durch ATP-abhängige Chaperonmaschinen während einer Erholungsphase beobachtet werden. (7) Peroxisomale sHsps: Da nie zuvor über peroxisomale sHsps berichtet wurde, nahm Hsp15.7-Po eine besondere Rolle bei den Untersuchungen ein. Dieses Protein besitzt eine putative peroxisomale Lokalisationssequenz (PTS) am C-Terminus, bestehend aus der Abfolge der Aminosäurereste SKL (PTS1). Durch Hefe-Zwei-Hybrid-Studien und lmmunfluoreszenzanalysen (in Tabak-Mesophyllprotoplasten und Säugerzellen) sowie den Einsatz von Mutanten wurde demonstriert, dass die PTS1 tatsächlich für die lnteraktion von Hsp15.7-Po mit den TPR-Domänen des peroxisomalen Importrezeptors Pex5 und für die peroxisomale Lokalisation des sHsps verantwortlich ist. Ein Hefe-Zwei-Hybrid-Screening nach möglichen lnteraktionspartnern von Hsp15.7-Po lieferte den ersten Anhaltspunkt für die lnteraktion mit cytoplasmatischen sHsps (Hspl7.7-CII). Dies ließ sich durch Pull-down-Analysen bestätigten und auf Hsp17.6-CII erweitern. Diese Interaktionen beeinflussten jedoch nicht die subzelluläre Lokalisation der jeweiligen Proteine bei Koexpression in Tabak-Mesophyllprotoplasten. All die hier dargestellten Ergebnisse weisen auf diverse Funktionen der einzelnen neu identifizierten sHsps der unterschiedlichen Klassen hin und bilden die Grundlage für zukünftige, detaillierte in planta Untersuchungen, die hierdurch erleichtert werden können.