Refine
Document Type
- Working Paper (9)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- Granger Causality (2)
- CAPM (1)
- COVID-19 (1)
- Comovements (1)
- Contagion (1)
- DCC-GARCH (1)
- Disintegration (1)
- Financial Institutions (1)
- Hong test (1)
- Jumps (1)
Systemic co-jumps
(2016)
The simultaneous occurrence of jumps in several stocks can be associated with major financial news, triggers short-term predictability in stock returns, is correlated with sudden spikes of the variance risk premium, and determines a persistent increase (decrease) of stock variances and correlations when they come along with bad (good) news. These systemic events and their implications can be easily overlooked by traditional univariate jump statistics applied to stock indices. They are instead revealed in a clearly cut way by using a novel test procedure applied to individual assets, which is particularly effective on high-volume stocks.
This paper analyzes sovereign risk shift-contagion, i.e. positive and significant changes in the propagation mechanisms, using bond yield spreads for the major eurozone countries. By emphasizing the use of two econometric approaches based on quantile regressions (standard quantile regression and Bayesian quantile regression with heteroskedasticity) we find that the propagation of shocks in euro's bond yield spreads shows almost no presence of shift-contagion. All the increases in correlation we have witnessed over the last years come from larger shocks propagated with higher intensity across Europe.
We show that FED policy announcements lead to a significant increase in international comovements in the cross-section of equity and in particular sovereign CDS markets. The relaxation of unconventionary monetary policies is felt strongly by emerging markets, and by countries that are open to the trading of goods and flows, even in the presence of floating exchange rates. It also impacts closed economies whose currencies are pegged to the dollar. This evidence is consistent with recent theories of a global financial cycle and the pricing of a FED’s put. In contrast, ECB announcements hardly affect comovements, even in the Eurozone.
We propose a spatiotemporal approach for modeling risk spillovers using time-varying proximity matrices based on observable financial networks and introduce a new bilateral specification. We study covariance stationarity and identification of the model, and analyze consistency and asymptotic normality of the quasi-maximum-likelihood estimator. We show how to isolate risk channels and we discuss how to compute target exposure able to reduce system variance. An empirical analysis on Euro-area cross-country holdings shows that Italy and Ireland are key players in spreading risk, France and Portugal are the major risk receivers, and we uncover Spain's non-trivial role as risk middleman.
Causality is a widely-used concept in theoretical and empirical economics. The recent financial economics literature has used Granger causality to detect the presence of contemporaneous links between financial institutions and, in turn, to obtain a network structure. Subsequent studies combined the estimated networks with traditional pricing or risk measurement models to improve their fit to empirical data. In this paper, we provide two contributions: we show how to use a linear factor model as a device for estimating a combination of several networks that monitor the links across variables from different viewpoints; and we demonstrate that Granger causality should be combined with quantile-based causality when the focus is on risk propagation. The empirical evidence supports the latter claim.
The impact of network connectivity on factor exposures, asset pricing and portfolio diversification
(2017)
This paper extends the classic factor-based asset pricing model by including network linkages in linear factor models. We assume that the network linkages are exogenously provided. This extension of the model allows a better understanding of the causes of systematic risk and shows that (i) network exposures act as an inflating factor for systematic exposure to common factors and (ii) the power of diversification is reduced by the presence of network connections. Moreover, we show that in the presence of network links a misspecified traditional linear factor model presents residuals that are correlated and heteroskedastic. We support our claims with an extensive simulation experiment.
This paper examines the relationship between oil movements and systemic risk of financial institution in major petroleum-based economies. We estimate ΔCoVaR for those institutions and observe the presence of elevated increases in its levels corresponding to the subprime and global financial crises. The results provide evidence in favor of risk measurement improvements by accounting for oil returns in the risk functions. The spread between the standard CoVaR and the CoVaR that includes oil absorbs in a time range longer than the duration of the oil shock. This indicates that the drop in the oil price has a longer effect on risk and requires more time to be discounted by the financial institutions. To support the analysis, we consider also the other major market-based systemic risk measures.
Analysing causality among oil prices and, in general, among financial and economic variables is of central relevance in applied economics studies. The recent contribution of Lu et al. (2014) proposes a novel test for causality— the DCC-MGARCH Hong test. We show that the critical values of the test statistic must be evaluated through simulations, thereby challenging the evidence in papers adopting the DCC-MGARCH Hong test. We also note that rolling Hong tests represent a more viable solution in the presence of short-lived causality periods.
Non-standard errors
(2021)
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in sample estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: non-standard errors. To study them, we let 164 teams test six hypotheses on the same sample. We find that non-standard errors are sizeable, on par with standard errors. Their size (i) co-varies only weakly with team merits, reproducibility, or peer rating, (ii) declines significantly after peer-feedback, and (iii) is underestimated by participants.