• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Maneesh, Mathew (1)

Year of publication

  • 2009 (1)

Document Type

  • Doctoral Thesis (1)

Language

  • English (1)

Has Fulltext

  • yes (1)

Is part of the Bibliography

  • no (1)

Institute

  • Physik (1)

1 search hit

  • 1 to 1
  • 10
  • 20
  • 50
  • 100
Modelling energetics and stability of carbon nanotubes : a novel approach (2009)
Maneesh, Mathew
This thesis is devoted to the developement of a classical model for the study of the energetics and stability of carbon nanotubes. The motivation behind such a model stems from the fact that production of nanotubes in a well-controlled manner requires a detailed understanding of their energetics. In order to study this different theoretical approaches are possible, ranging from the computationally expensive quantum mechanical first principle methods to the relatively simple classical models. A wisely developed classical model has the advantage that it could be used for systems of any possible size while still producing reasonable results. The model developed in this thesis is based on the well-known liquid drop model without the volume term and hence we call it liquid surface model. Based on the assumption that the energy of a nanotube can be expressed in terms of its geometrical parameters like surface area, curvature and shape of the edge, liquid surface model is able to predict the binding energy of nanotubes of any chirality once the total energy and the chiral indices of it are known. The model is suggested for open end and capped nanotubes and it is shown that the energy of capped nanotubes is determined by five physical parameters, while for the open end nanotubes three parameters are sufficient. The parameters of the liquid surface model are determined from the calculations performed with the use of empirical Tersoff and Brenner potentials and the accuracy of the model is analysed. It is shown that the liquid surface model can predict the binding energy per atom for capped nanotubes with relative error below 0.3% from that calculated using Brenner potential, corresponding to the absolute energy difference being less than 0.01 eV. The influence of the catalytic nanoparticle on top of which a nanotube grows, on the nanotube energetics is also discussed. It is demonstrated that the presence of catalytic nanoparticle changes the binding energy per atom in such a way that if the interaction of a nanotube with the catalytic nanoparticle is weak then attachment of an additional atom to a nanotube is an energetically favourable process, while if the catalytic nanoparticle nanotube interaction is strong , it becomes energetically more favourable for the nanotube to collapse. The suggested model gives important insights in the energetics and stability of nanotubes of different chiralities and is an important step towards the understanding of nanotube growth process. Young modulus and curvature constant are calculated for single-wall carbon nanotubes from the paremeters of the liquid surface model and demonstrated that the obtained values are in agreement with the values reported earlier both theoretically and experimentally. The calculated Young modulus and the curvature constant were used to conclude about the accuracy of the Tersoff and Brenner potentials. Since the parameters of the liquid surface model are obtained from the Tersoff and Brenner potential calculations, the agreement of elastic properties derived from these parameters corresponds to the fact that both potentials are capable of describing the elastic properties of nanotubes. Finally, the thesis discuss the possible extension of the model to various systems of interest.
  • 1 to 1

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks