Refine
Year of publication
Document Type
- Article (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(α,γ)16O fusion reaction and to reach lower center-ofmass energies than measured so far.
The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-to-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision.
NeuLAND (New Large-Area Neutron Detector) is the next-generation neutron detector for the R3B (Reactions with Relativistic Radioactive Beams) experiment at FAIR (Facility for Antiproton and Ion Research). NeuLAND detects neutrons with energies from 100 to 1000 MeV, featuring a high detection efficiency, a high spatial and time resolution, and a large multi-neutron reconstruction efficiency. This is achieved by a highly granular design of organic scintillators: 3000 individual submodules with a size of 5 × 5 × 250 cm3 are arranged in 30 double planes with 100 submodules each, providing an active area of 250 × 250 cm2 and a total depth of 3 m. The spatial resolution due to the granularity together with a time resolution of 150 ps ensures high-resolution capabilities. In conjunction with calorimetric properties, a multi-neutron reconstruction efficiency of 50% to 70% for four-neutron events will be achieved, depending on both the emission scenario and the boundary conditions allowed for the reconstruction method. We present in this paper the final design of the detector as well as results from test measurements and simulations on which this design is based.
The quasi-free scattering reactions 11C(p, 2p) and 10,11,12C(p, pn) have been studied in inverse kinematics at beam energies of 300–400 MeV/u at the R3B-LAND setup. The outgoing proton-proton and protonneutron pairs were detected in coincidence with the reaction fragments in kinematically complete measurements. The efficiency to detect these pairs has been obtained from GEANT4 simulations which were tested using the 12C(p, 2p) and 12C(p, pn) reactions. Experimental cross sections and momentum distributions have been obtained and compared to DWIA calculations based on eikonal theory. The new results reported here are combined with previously published cross sections for quasi-free scattering from oxygen and nitrogen isotopes and together they enable a systematic study of the reduction of singleparticle strength compared to predictions of the shell model over a wide neutron-to-proton asymmetry range. The combined reduction factors show a weak or no dependence on isospin asymmetry, in contrast to the strong dependency reported in nucleon-removal reactions induced by nuclear targets at lower energies. However, the reduction factors for (p, 2p) are found to be ’significantly smaller than for (p, pn) reactions for all investigated nuclei.
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process β-decay chains. These nuclei are attributed to the p and rp process.
For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections.
The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
The neutron-unbound isotope 13Be has been studied in several experiments using different reactions, different projectile energies, and different experimental setups. There is, however, no real consensus in the interpretation of the data, in particular concerning the structure of the low-lying excited states. Gathering new experimental information, which may reveal the 13Be structure, is a challenge, particularly in light of its bridging role between 12Be, where the N = 8 neutron shell breaks down, and the Borromean halo nucleus 14Be. The purpose of the present study is to investigate the role of bound excited states in the reaction product 12Be after proton knockout from 14B, by measuring coincidences between 12Be, neutrons, and γ rays originating from de-excitation of states fed by neutron decay of 13Be. The 13Be isotopes were produced in proton knockout from a 400 MeV/nucleon 14B beam impinging on a CH2 target. The 12 Be-n relative-energy spectrum d σ /d Ef n was obtained from coincidences between 12Be(g.s.) and a neutron, and also as threefold coincidences by adding γ rays, from the de-excitation of excited states in 12Be. Neutron decay from the first 5/2+ state in 13Be to the 2+ state in 12Be at 2.11 MeV is confirmed. An energy independence of the proton-knockout mechanism is found from a comparison with data taken with a 35 MeV/nucleon 14B beam. A low-lying p-wave resonance in 13Be(1/2−) is confirmed by comparing proton- and neutron-knockout data from 14B and 14Be.
Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on 20,21N are reported. Relativistic 20,21N ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the 19 N(n,γ )20 N and 20 N(n,γ )21 N excitation functions and thermonuclear reaction rates have been determined. The 19N(n,γ)20N rate is up to a factor of 5 higher at T < 1 GK with respect to previous theoretical calculations, leading to a 10% decrease in the predicted fluorine abundance.
The evolution of the traditional nuclear magic numbers away from the valley of stability is an active field of research. Experimental efforts focus on providing key spectroscopic information that will shed light into the structure of exotic nuclei and understanding the driving mechanism behind the shell evolution. In this work, we investigate the spin-orbit shell gap towards the neutron dripline. To do so, we employed (p,2p) quasi-free scattering reactions to measure the proton component of the state of 16,18,20C. The experimental findings support the notion of a moderate reduction of the proton spin-orbit splitting, at variance to recent claims for a prevalent magic number towards the neutron dripline.
Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B/LAND setup with incident beam energies in the range of 300–450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type AO(p,2p)A−1N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.
The emission of neutron pairs from the neutron-rich N 1⁄4 12 isotones 18C and 20O has been studied by high-energy nucleon knockout from 19N and 21O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay 19Nð−1pÞ18C* → 16C þ n þ n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a 14C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay 21Oð−1nÞ20O* → 18O þ n þ n, attributed to its formation through the knockout of a deeply bound neutron that breaks the 16O core and reduces the number of pairs.