Refine
Document Type
- Article (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- Risk assessment (3)
- Surface water (3)
- Agroecology (1)
- Biota (1)
- Chemicals (1)
- Chemicals of emerging concern (1)
- Chlorothalonil (1)
- Combined stress (1)
- Concentration addition (1)
- Effect-models (1)
Institute
Background: Within the last decades, there has been increasing research on the occurrence of chemicals of emerging concern (CECs) in aquatic ecosystems due to their potential adverse effects on freshwater organisms and risk to human health. However, information on CECs in freshwater environments in sub-Saharan countries is very limited. Here, we investigated the occurrence of CECs in snails and sediments collected from 48 sites within the Lake Victoria South Basin, Kenya, which have been previously investigated for water contamination. Samples were analyzed by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) with a target list of 429 compounds.
Results: In total, 30 compounds have been detected in snails and 78 in sediment samples, compared to 79 previously identified compounds in water. By extending the monitoring of CECs to snails and sediments, we found 68 compounds that were not previously detected in water. These compounds include the anti-cancer drug anastrozole, detected for the first time in the Kenyan environment. Individual compound concentrations were detected up to 480 ng/g wet weight (N-ethyl-o-toluenesulfonamide) in snails and 110 ng/g organic carbon (pirimiphos-methyl) in sediments. Higher contaminant concentrations were found in agricultural sites than in areas not impacted by anthropogenic activities. Crustaceans were the organisms at greatest toxic risk from sediment contamination [toxic unit (TU) up to 0.99] with diazinon and pirimiphos-methyl driving this risk. Acute and chronic risks to algae were driven by diuron (TU up to 0.24), whereas fish were found to be at low-to-no acute risk (TU up to 0.007).
Conclusions: The compound classes present at the highest frequencies in all matrices were pesticides and biocides. This study shows substantial contamination of surface water in rural western Kenya. By filling data gaps on contamination of sediments and aquatic biota, our study reveals that CECs pose a substantial risk to environmental health in Kenya demanding for monitoring and mitigation.
Deichbau und andere flussbautechnische Maßnahmen haben dazu geführt, dass die Mittlere Elbe ihre ursprünglichen Überschwemmungsgebiete verloren hat. Um die Auswirkungen der alljährlich auftretenden Hochwasserereignisse einzudämmen, wurden große Bereiche der Talniederung durch Deiche vom Überflutungsgeschehen abgetrennt. Diese Eingriffe in den Naturhaushalt ermöglichten gleichfalls eine intensive ackerbauliche Nutzung oder eine hochwassersichere Bebauung der Auen. Die natürliche Auendynamik ist heute weitestgehend auf einen schmalen Bereich entlang der Elbe beschränkt. Hinter den Deichen sind die für die Elbeauen typischen Lebensräume von der lebenswichtigen Auendynamik abgeschnitten. Angepasste Auenarten und -lebensgemeinschaften treten zugunsten von Allerweltsarten zurück. Eine Wiederanbindung von Altauenbereichen an das Überflutungsgeschehen ist deshalb eine der vordringlichsten Maßnahmen zur Revitalisierung gefährdeter Auenlebensräume und stellt eine Chance dar, einen nachhaltigen und modernen Hochwasserschutz mit Naturschutzzielen zu verbinden. An der Elbe entspricht das aktuelle Hochwasserschutzsystem nicht den heutigen Anforderungen an den Hochwasserschutz. Um jedoch jederzeit auf mögliche große Hochwasserereignisse reagieren zu können, entstanden Anfang der 1990er Jahre in den Anliegerländern der Elbe zahlreiche Pläne für Deichrückverlegungen.
Das Roßlauer Oberluch bietet mit seinen Feuchtflächen ideale Lebensräume für eine artenreiche Fauna und Flora. Auch Stechmücken finden hier gute Reproduktionsbedingungen. Auf Grund der prognostizierten Klimaerwärmung könnten sich diese Bedingungen sogar noch verbessern, denn starke Regenfälle, Überschwemmungen und hohe Temperaturen begünstigen die Fortpflanzung von Stechmücken. Neben den Faktoren, die die Entwicklung der Mücken fördern, wirken natürlich auch regulierende Mechanismen. Neben Fressfeinden spielen Nahrungskonkurrenten eine wichtige Rolle für den Bestand einer Art. Während die Fressfeinde bereits gut untersucht sind, ist über die Nahrungskonkurrenten der Mückenlarven bislang wenig bekannt. Mückenlarven filtrieren organische Partikel aus dem Wasser und beanspruchen demnach dieselben Nahrungsressourcen wie filtrierende Kleinkrebse, sodass Kleinkrebse ernstzunehmende Nahrungskonkurrenten für Mückenlarven sind. 2007 wurde im Rahmen komplexer Untersuchungen im Zusammenhang mit der Deichrückverlegung eine Studie zur Charakterisierung von Mückenbrutplätzen im Roßlauer Oberluch durchgeführt. Die Ergebnisse werden im Folgenden dargestellt.
Highlights
• Comprehensive pesticide monitoring at 105 sites over two application periods.
• RAC exceedances occurred for majority of small streams.
• Rainfall increases pesticide concentrations in streams by factor of 10.
• 2,4-D, MCPA, terbuthylazine, and nicosulfuron increased most strongly during rainfall.
• Sum concentration of pesticide metabolites factor 10 higher than pesticides.
Abstract
Few studies have examined the exposure of small streams (< 30 km2 catchment size) to agriculturally used pesticides, compared to large rivers. A total of 105 sites in 103 small agricultural streams were investigated for 76 pesticides (insecticides, herbicides, fungicides) and 32 pesticide metabolites in spring and summer over two years (2018 and 2019) during dry weather and rainfall using event-driven sampling. The median total concentration of the 76 pesticides was 0.18 µg/L, with 9 pesticides per sample on average (n = 815). This is significantly higher than monitoring data for larger streams, reflecting the close proximity to agricultural fields and the limited dilution by non-agricultural waters. The frequency of detection of all pesticides correlated with sales quantity and half-lives in water. Terbuthylazine, MCPA, boscalid, and tebuconazole showed the highest median concentrations. The median of the total concentration of the 32 metabolites exceeded the pesticide concentration by more than an order of magnitude. During dry weather, the median total concentration of the 76 pesticides was 0.07 µg/L, with 5 pesticides per sample on average. Rainfall events increased the median total pesticide concentration by a factor of 10 (to 0.7 µg/L), and the average number of pesticides per sample to 14 (with up to 41 in single samples). The concentration increase was particularly strong for 2,4-D, MCPA, terbuthylazine, and nicosulfuron (75 percentile). Metabolite concentrations were generally less responsive to rainfall, except for those of terbuthylazine, flufenacet, metamitron, and prothioconazole. The frequent and widespread exceedance of the regulatory acceptable concentrations (RAC) of the 76 pesticides during both, dry weather and rainfall, suggests that current plant protection product authorization and risk mitigation methods are not sufficient to protect small streams.
Combined effects of herbicides and insecticides reduce biomass of sensitive aquatic invertebrates
(2024)
Highlights
• In-stream invertebrate biomass determination performed by image analysis.
• Insecticide pressure reduces abundance of SPEARpesticides taxa.
• Herbicide pressure reduces insecticide-sensitive algae feeders' + predators' biomass.
• Combined effect of herbicide mediated food shortage and insecticide pressure.
Abstract
The structure and biomass of aquatic invertebrate communities play a crucial role in the matter dynamics of streams. However, biomass is rarely quantified in ecological assessments of streams, and little is known about the environmental and anthropogenic factors that influence it. In this study, we aimed to identify environmental factors that are associated with invertebrate structure and biomass through a monitoring of 25 streams across Germany. We identified invertebrates, assigned them to taxonomic and trait-based groups, and quantified biomass using image-based analysis. We found that insecticide pressure generally reduced the abundance of insecticide-vulnerable populations (R2 = 0.43 applying SPEARpesticides indicator), but not invertebrate biomass. In contrast, herbicide pressure reduced the biomass of several biomass aggregations. Especially, insecticide-sensitive populations, that were directly (algae feeder, R2 = 0.39) or indirectly (predators, R2 = 0.29) dependent on algae, were affected. This indicated a combined effect of possible food shortage due to herbicides and direct insecticide pressure. Specifically, all streams with increased herbicide pressure showed a reduced overall biomass share of Trichoptera from 43 % to 3 % and those of Ephemeroptera from 20 % to 3 % compared to streams grouped by low herbicide pressure. In contrast, insecticide-insensitive Gastropoda increased from 10 % to 45 %, and non-vulnerable leaf-shredding Crustacea increased from 10 % to 22 %. In summary, our results indicate that at the community level, the direct effects of insecticides and the indirect, food-mediated effects of herbicides exert a combined effect on the biomass of sensitive insect groups, thus disrupting food chains at ecosystem level.
Schistosomiasis is a severe neglected tropical disease caused by trematodes and transmitted by freshwater snails. Snails are known to be highly tolerant to agricultural pesticides. However, little attention has been paid to the ecological consequences of pesticide pollution in areas endemic for schistosomiasis, where people live in close contact with non-sanitized freshwaters. In complementary laboratory and field studies on Kenyan inland areas along Lake Victoria, we show that pesticide pollution is a major driver in increasing the occurrence of host snails and thus the risk of schistosomiasis transmission. In the laboratory, snails showed higher insecticide tolerance to commonly found pesticides than associated invertebrates, in particular to the neonicotinoid Imidacloprid and the organophosphate Diazinon. In the field, we demonstrated at 48 sites that snails were present exclusively in habitats characterized by pesticide pollution and eutrophication. Our analysis revealed that insensitive snails dominated over their less tolerant competitors. The study shows for the first time that in the field, pesticide concentrations considered “safe” in environmental risk assessment have indirect effects on human health. Thus we conclude there is a need for rethinking the environmental risk of low pesticide concentrations and of integrating agricultural mitigation measures in the control of schistosomiasis.
Synergistic interaction between a toxicant and food stress is further exacerbated by temperature
(2024)
Highlights
• Interaction between one chemical and two non-chemical stressors was studied.
• Food limitation and elevated temperature showed additive interactions.
• Environmental stressors substantially increase the effects of esfenvalerate.
• Multiple stressors induced strong latent synergistic effects.
• Combined effects of multiple stressors were predicted by the Stress Addition Model.
Abstract
Global biodiversity is declining at an unprecedented rate in response to multiple environmental stressors. Effective biodiversity management requires deeper understanding of the relevant mechanisms behind such ecological impacts. A key challenge is understanding synergistic interactions between multiple stressors and predicting their combined effects. Here we used Daphnia magna to investigate the interaction between a pyrethroid insecticide esfenvalerate and two non-chemical environmental stressors: elevated temperature and food limitation. We hypothesized that the stressors with different modes of action can act synergistically. Our findings showed additive effects of food limitation and elevated temperature (25 °C, null model effect addition (EA)) with model deviation ratio (MDR) ranging from 0.7 to 0.9. In contrast, we observed strong synergistic interactions between esfenvalerate and food limitation at 20 °C, considerably further amplified at 25 °C. Additionally, for all stress combinations, the synergism intensified over time indicating the latent effects of the pesticide. Consequently, multiple stress substantially reduced the lethal concentration of esfenvalerate by a factor of 19 for the LC50 (0.45–0.024 μg/L) and 130 for the LC10 (0.096–0.00074 μg/L). The stress addition model (SAM) predicted increasing synergistic interactions among stressors with increasing total stress.
Highlights
• We compared effects of sequential vs. single-pulse exposure on Daphnia magna.
• Mortality of sequential exposure could be predicted by concentration addition.
• Population growth rate at high concentrations also followed concentration addition.
• At low concentrations single exposure caused a hormetic response.
• Sequential exposure suppressed the hormetic responses in population growth rate.
Abstract
Sequential pesticide exposure is a common scenario in both aquatic and terrestrial agricultural ecosystems. Predicting the effects of such exposures is therefore highly relevant for improving risk assessment. However, there is currently no information available for predicting the effects of sequential exposure to the same toxicant at both high and low concentrations. Here we exposed one-week-old individuals of Daphnia magna to the pyrethroid Esfenvalerate for 24 h and compared the effects with individuals treated twice with half the concentration after 7 and 14 days. We showed that at the concentrations close to the LC50, both the survival and population growth rate from the two half-pulses were consistent with the concentration addition approach. At low (1/10th to 1/100th of the LC50) and ultra-low concentrations (1/100th to 1/1000th of the LC50), survival was around 100 %, while the population growth rate showed a hormetic increase following the one-pulse exposure but not for the two-pulse exposure. We hypothesize that this hormetic effect is due to lower systemic stress (SyS) after pesticide exposure in combination with only one rebound stress pulse. Our study suggests that while the lethal effects of sequential exposure are according to the concentration addition model, the sublethal effects at low and ultra-low concentrations need to consider hormetic effects.
Highlights
• 307 chemicals identified, 18 proposed for regular monitoring and abatement.
• Forty-six chemicals detected in >50 % of the sites.
• Ecotoxicological risk on aquatic organisms driven by pesticides.
• Dry seasons pose high risk for crustaceans and algae.
• Seasonal variation of chemical occurrence and concentrations reported.
Abstract
The release of chemicals into the environment presents a significant threat to aquatic ecosystems dependent on the proximity to emission sources and seasonal dynamics of emission and mobilization. While spatial-temporal information on water pollution in Europe is increasing, there are substantial knowledge gaps on seasonal pollution dynamics in tropical countries. Thus, we took Lake Victoria South Basin in western Kenya as a case study to identify spatial and seasonal hot spots of contamination, quantified toxic risks to different groups of organisms, and identified seasonal risk drivers. For this purpose, we analyzed grab water samples from five rivers with agricultural and wastewater treatment plants in their catchment in four different seasons. We used liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) with a target list of 785 organic micropollutants. A total of 307 compounds were detected with concentrations ranging from 0.3 ng/L to 6.6 μg/L. Using a Toxic Unit (TU) approach based on mixture toxicity to standard test organisms, crustaceans were identified as the most affected group followed by algae and fish. For crustaceans, chronic risk thresholds were exceeded in 96 % of all the samples, while 56 % of all samples are expected to be acutely toxic, with the highest risk in February during the dry season. High toxic unit values for algae and fish were recorded in July dry season and May wet season. Diazinon, imidacloprid, clothianidin and pirimiphos-methyl were the major drivers for crustacean toxicity while triclosan and different herbicide mixtures drive risks to algae in dry and wet seasons, respectively. A total of 18 chemicals were found to exceed acute and chronic environmental risk thresholds. With this study, strong spatial-temporal patterns of pollution, risks and risk drivers could be confirmed informing prioritization of monitoring and abatement to enhance water quality and reduce toxic risks.