Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
- magisterthesis (1)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Chest pain unit (1)
- Coronary intervention (1)
- NSTEMI (1)
- Prognosis (1)
- cross-linking (1)
- iron metabolism (1)
- macrophage polarization (1)
- polymeric micelle (1)
- polypept(o)ide (1)
- superparamagnetic iron oxide nanoparticles (1)
Institute
- Medizin (3)
- ELEMENTS (1)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Kulturwissenschaften (1)
- Physik (1)
Invasive treatment of NSTEMI patients in German chest pain units – evidence for a treatment paradox
(2018)
Background: Patients with non ST-segment elevation myocardial infarction (NSTEMI) represent the largest fraction of patients with acute coronary syndrome in German Chest Pain units. Recent evidence on early vs. selective percutaneous coronary intervention (PCI) is ambiguous with respect to effects on mortality, myocardial infarction (MI) and recurrent angina. With the present study we sought to investigate the prognostic impact of PCI and its timing in German Chest Pain Unit (CPU) NSTEMI patients.
Methods and results: Data from 1549 patients whose leading diagnosis was NSTEMI were retrieved from the German CPU registry for the interval between 3/2010 and 3/2014. Follow-up was available at median of 167 days after discharge. The patients were grouped into a higher (Group A) and lower risk group (Group B) according to GRACE score and additional criteria on admission. Group A had higher Killip classes, higher BNP levels, reduced EF and significant more triple vessel disease (p < 0.001). Surprisingly, patients in group A less frequently received early diagnostic catheterization and PCI. While conservative management did not affect prognosis in Group B, higher-risk CPU-NSTEMI patients without PCI had a significantly worse survival.
Conclusions: The present results reveal a substantial treatment gap in higher-risk NSTEMI patients in German Chest Pain Units. This treatment paradox may worsen prognosis in patients who could derive the largest benefit from early revascularization.
Iron is an essential co-factor for cellular processes. In the immune system, it can activate macrophages and represents a potential therapeutic for various diseases. To specifically deliver iron to macrophages, iron oxide nanoparticles are embedded in polymeric micelles of reactive polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine). Upon surface functionalization via dihydrolipoic acid, iron oxide cores act as crosslinker themselves and undergo chemoselective disulfide bond formation with the surrounding poly(S-ethylsulfonyl-l-cysteine) block, yielding glutathione-responsive core cross-linked polymeric micelles (CCPMs). When applied to primary murine and human macrophages, these nanoparticles display preferential uptake, sustained intracellular iron release, and induce a strong inflammatory response. This response is also demonstrated in vivo when nanoparticles are intratracheally administered to wild-type C57Bl/6N mice. Most importantly, the controlled release concept to deliver iron oxide in redox-responsive CCPMs induces significantly stronger macrophage activation than any other iron source at identical iron levels (e.g., Feraheme), directing to a new class of immune therapeutics.
Die Arbeit entstand im Rahmen des Förderprogramms ”Profil NT” und war Bestandteil des BMBF–Projektes ”NANOTHERM” (FKZ17PNT005). Dabei sollte die Möglichkeit der Integration und Verwendung von Nanodrähten als funktionsbestimmende Komponente im thermoelektrischen Sensorelement untersucht werden. Eine wichtige Aufgabe bestand darin die thermoelektrischen Eigenschaften der einzelnen Nanodrähte, insbesondere den Seebeck–Koeffizienten, zu untersuchen. Im Hinblick auf die weitere Entwicklung der Nanotechnologie ist es sehr wichtig, geeignete Messplattformen zu generieren und der Wissenschaftlichen Gemeinschaft zur Verfügung zu stellen für die Charakterisierung von Nanostrukturen. Für die Forschung bedeutet dies, dass man immer präziser die ”Physik im kleinen” studieren kann. Im Bezug auf die Anwendungen stellen die ausgeführten Untersuchungen eine wesentliche Basis für die Bauelemente–Optimierung und ihren späteren industriellen Einsatz dar.
In dieser Arbeit werden zwei Chipdesigns vorgestellt für die Bestimmung des Seebeck–Koeffizienten, die eine ausreichend hohe Temperaturdifferenz in Nanostrukturen erzeugen. Für beide Chips wird die mikromechanische Fertigung im einzelnen erläutert. Zusätzlich wurden die Chips in FEM–Simulationen analysiert. Eine messtechnische Charakterisierung der Chips bestätigt die Simulationen und die Funktionsweise der Chips für Untersuchungen des Seebeck–Koeffizienten an Nanostrukturen. Erstmals wurden Wolfram bzw. Platin FEBID–Deponate hinsichtlich des Seebeck–Koeffizienten untersucht. Für die Wolfram–Deponate ergab sich ein negativer Seebeck–Koeffizient. Der gemessenen Seebeck–Koeffizient war über mehrere Tage stabil. Als Ergebnis temperaturabhängiger Messungen des Seebeck–Koeffizienten konnte eine Wurzel-T Abhängigkeit beobachtet werden, die in der Theorie beschrieben wird.
Eine Untersuchung des Seebeck–Koeffizienten an Pt–FEBID–Deponaten zeigt einen Vorzeichenwechsel für Proben mit geringer elektrischer Leitfähigkeit (isolierender Charakter, schwache Kopplung). In der Literatur wird dieser Vorzeichenwechsel allerdings für Proben mit metallischer elektrischer Leitfähigkeit beschrieben. Aufgrund der Messergebnisse ist zu prüfen inwiefern die Theorie des Seebeck–Koeffizienten auf Proben mit schwacher Kopplung zu übertragen ist. Da die gemessenen Seebeck–Koeffizienten bei einigen nanoskaligen Proben sehr klein waren, wurde der Seebeck–Koeffizient des Kontaktmaterials in separaten Versuchen untersucht. Für das hier verwendete Schichtsystem Ti(40nm)/Au(120nm) kann ein Seebeck–Koeffizient von -0,22µV/K angegeben werden. Bei der Charakterisierung der Pt–FEBID–Deponaten wurde dieser Beitrag des Kontaktschichtsystems zur Thermospannung berücksichtigt.
Untersuchungen an BiTe–Nanodrähten mit dem Seebeck–Chip ergaben einen negativen Seebeck–Koeffizienten. Die ersten Untersuchungen wurden mit Kupfer als Kontaktmaterial durchgeführt, weil dieses sehr gute Lift–Off Eigenschaften besaß. Trotz der Kupferdiffusion in den Nanodraht hinein, wird der negative Seebeck–Koeffizient einem Tellur–Überschuss zugeschrieben, denn an Proben mit einer geeigneten Diffusionsbarriere war in nachfolgenden Untersuchungen ebenso ein negativer Seebeck–Koeffizient zu messen. Die ermittelten Beweglichkeiten sind niedriger als die von Bulkmaterial und können durch klassische Size–Effekte erklärt werden. Die gemessenen Ladungsträgerkonzentrationen liegen in typischen Bereichen für Halbmetalle. Die Charakterisierung des Seebeck–Koeffizienten mit Hilfe des hier vorgestellten Z–Chip ergab einen negativen Seebeck–Koeffizienten für die BiTe–Nanodrähte, die wie oben erläutert auf einen Tellur–Überschuss zurückzuführen sind. Eine Abschätzung eines mit Nanodrähten aufgebauten Sensors zeigt, dass im Vergleich zu konventionellen Dünnschicht–Thermopiles deutlich höhere Empfindlichkeiten zu erzielen sind. Erste technologische Konzepte für den Aufbau von Nanodraht–Arrays wurden erarbeitet und durch entsprechende Untersuchungen verifiziert.
Grundsätzlich ist der Z–Chip für die Charakterisierung aller drei Transportkoeffizienten geeignet und bietet die Option, anderen Arbeitsgruppen eine universelle thermoelektrische Messplattform zur Verfügung zu stellen.
Purpose: Scientific and clinical achievements in radiation, medical, and surgical oncology are changing the landscape of interdisciplinary oncology. The German Society for Radiation Oncology (DEGRO) working group of young clinicians and scientists (yDEGRO) and the DEGRO representation of associate and full professors (AKRO) are aware of the essential role of radiation oncology in multidisciplinary treatment approaches. Together, yDEGRO and AKRO endorsed developing a German radiotherapy & radiation oncology vision 2030 to address future challenges in patient care, research, and education. The vision 2030 aims to identify priorities and goals for the next decade in the field of radiation oncology. Methods: The vision development comprised three phases. During the first phase, areas of interest, objectives, and the process of vision development were defined jointly by the yDEGRO, AKRO, and the DEGRO board. In the second phase, a one-day strategy retreat was held to develop AKRO and yDEGRO representatives’ final vision from medicine, biology, and physics. The third phase was dedicated to vision interpretation and program development by yDEGRO representatives. Results: The strategy retreat’s development process resulted in conception of the final vision “Innovative radiation oncology Together – Precise, Personalized, Human.” The first term “Innovative radiation oncology” comprises the promotion of preclinical research and clinical trials and highlights the development of a national committee for strategic development in radiation oncology research. The term “together” underpins collaborations within radiation oncology departments as well as with other partners in the clinical and scientific setting. “Precise” mainly covers technological precision in radiotherapy as well as targeted oncologic therapeutics. “Personalized” emphasizes biology-directed individualization of radiation treatment. Finally, “Human” underlines the patient-centered approach and points towards the need for individual longer-term career curricula for clinicians and researchers in the field. Conclusion: The vision 2030 balances the ambition of physical, technological, and biological innovation as well as a comprehensive, patient-centered, and collaborative approach towards radiotherapy & radiation oncology in Germany.
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process β-decay chains. These nuclei are attributed to the p and rp process.
For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections.
The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
Simulation results for future measurements of electromagnetic proton form factors at PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯p→e+e− is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. p¯p→π+π−, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.