Refine
Year of publication
Document Type
- Article (17)
- Contribution to a Periodical (1)
- Preprint (1)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
- Ascomycota (3)
- Basidiomycota (2)
- Fungi (2)
- Taxonomy (2)
- Anamorphic fungi (1)
- Benin (1)
- Biodiversity (1)
- Bolivia (1)
- CAI-1 (1)
- Calathea (1)
Expeditionen ins Pilzreich Panamas : Pionierarbeit in einer der artenreichsten Regionen unserer Erde
(2007)
Als Bindeglied zwischen Nord- und Südamerika ist Panama ein »Biodiversitäts-Hotspot« – es beherbergt eine außerordentlich hohe Artenvielfalt an Pflanzen, Tieren und Pilzen. Pilze übernehmen in tropischen Ökosystemen wichtige Aufgaben: Sie zersetzen totes organisches Material, helfen den Pflanzen bei der Aufnahme von Wasser und Mineralstoffen aus dem Boden, und sie leisten sogar als Parasiten einen Beitrag zum Erhalt einer großen Artenvielfalt. Aufgrund einzelner Stichproben wissen wir, dass die Anzahl der Pilzarten in den Tropen diejenige der Pflanzen um ein Vielfaches übertrifft. Doch während für Panama zirka 9500 verschiedene Arten von Gefäßpflanzen bekannt sind, zählt eine im Rahmen unserer Arbeit erstellte Checkliste der Pilze nur zirka 1800 Arten. Das zeigt, dass für die Erforschung der Pilze noch umfangreiche Pionierarbeit geleistet werden muss. Zwischen 2003 und 2006 geschah dies im Rahmen einer Universitätspartnerschaft der Universität Frankfurt mit der Universidad Autónoma de Chiriquí, die durch den Deutschen Akademischen Austauschdienst (DAAD) gefördert wurde. Im Zentrum eines Projekts der Deutschen Forschungsgemeinschaft (DFG) steht die Erforschung der Vielfalt und Ökologie pflanzenparasitischer Pilze. Des Weiteren untersucht unsere Arbeitsgruppe Pilze an Insekten sowie an menschlichen Haut- und Nagelläsionen.
Cercosporoid fungi (Mycosphaerellaceae, Mycosphaerellales, Ascomycota) are one of the largest and most diverse groups of hyphomycetes causing a wide range of diseases of economically important plants as well as of plants in the wild. Although more than 6000 species are known for this group, the documentation of this fungal group is far from complete. Especially in the tropics, the diversity of cercosporoid fungi is poorly known. The present study aims to identify and characterise cercosporoid fungi collected on host plants belonging to Fabaceae in Benin, West Africa. Information on their morphology, host species and DNA sequence data (18S rDNA, 28S rDNA, ITS and tef1) is provided. DNA sequence data were obtained by a simple and non-culture-based method for DNA isolation which has been applied for cercosporoid fungi for the first time in the context of the present study. Among the loci used for the phylogenetic analysis, tef1 provided the best resolution together with the multigene dataset. Species delimitation in many cases, however, was only possible by combining molecular sequence data with morphological characteristics. Based on forty specimens recently collected in Benin, 18 species are presented with morphological descriptions, illustrations and sequence data. Among these, six species in the genus Cercospora and two species in Pseudocercospora are proposed as species new to science. The newly described species are Cercospora (C.) beninensis on Crotalaria macrocalyx, C. parakouensis on Desmodium tortuosum, C. rhynchophora on Vigna unguiculata, C. vignae-subterraneae on Vigna subterranea, C. tentaculifera on Vigna unguiculata, C. zorniicola on Zornia glochidiata, Pseudocercospora sennicola on Senna occidentalis and Pseudocercospora tabei on Vigna unguiculata. Eight species of cercosporoid fungi are reported for Benin for the first time, three of them, namely C. cf. canscorina, C. cf. fagopyri and C. phaseoli-lunati are new for West Africa. The presence of two species of cercosporoid fungi on Fabaceae previously reported from Benin, namely Nothopassalora personata and Passalora arachidicola, is confirmed.
Soil degradation can have an impact on the soil microbiota, but its specific effects on soil fungal communities are poorly understood. In this work, we studied the impact of soil degradation on the richness and diversity of communities of soil fungi, including three different degrees of degradation in Germany and Panama. Soil fungi were isolated monthly using the soil-sprinkling method for 8 months in Germany and 3 months in Panama, and characterized by morphological and molecular data. Soil physico-chemical properties were measured and correlated with the observed values of fungal diversity. We isolated a total of 71 fungal species, 47 from Germany, and 32 from Panama. Soil properties were not associated with fungal richness, diversity, or composition in soils, with the exception of soil compaction in Germany. The geographic location was a strong determinant of the soil fungal species composition although in both countries there was dominance by members of the orders Eurotiales and Hypocreales. In conclusion, the results of this work do not show any evident influence of soil degradation on communities of soil fungi in Germany or Panama.
Foliar fungal communities of plants are diverse and ubiquitous. In grasses endophytes may increase host fitness; in trees, their ecological roles are poorly understood. We investigated whether the genotype of the host tree influences community structure of foliar fungi. We sampled leaves from genotyped balsam poplars from across the species' range, and applied 454 amplicon sequencing to characterize foliar fungal communities. At the time of the sampling the poplars had been growing in a common garden for two years. We found diverse fungal communities associated with the poplar leaves. Linear discriminant analysis and generalized linear models showed that host genotypes had a structuring effect on the composition of foliar fungal communities. The observed patterns may be explained by a filtering mechanism which allows the trees to selectively recruit fungal strains from the environment. Alternatively, host genotype-specific fungal communities may be present in the tree systemically, and persist in the host even after two clonal reproductions. Both scenarios are consistent with host tree adaptation to specific foliar fungal communities and suggest that there is a functional basis for the strong biotic interaction.
Phytotoxic dioxolanones from Guignardia bidwellii can be described as potential virulence factors which cause the formation of lesions upon an infection by G. bidwellii. The toxin guignardic acid was found in planta of G. bidwellii-infected Vitis vinifera leaves, whereas no phytotoxic dioxolanones were detected in uninfected leaf material. Secondary metabolism analyses of further phytopathogenic fungi from the genus Guignardia led to the observation that all species investigated can produce the phytotoxins known from G. bidwellii. In addition to these studies, it was demonstrated that phenguignardic acid is biosynthetically derived from two molecules of phenylalanine and that phenylalanine is a key precursor in the biosynthesis of the two other phytotoxins – alaguignardic acid and guignardic acid.
This study aims at characterizing the diversity and temporal changes of species richness and composition of fungi in an ecotone of a forest border and a meadow in the Taunus mountain range in Germany. All macroscopically visible, epigeous fungi and vascular plants were sampled monthly over three years, together with climatic variables like humidity and temperature that influence fungal diversity and composition as shown by previous studies. In this mosaic landscape, a total of 855 fungal species were collected and identified based on morphological features, the majority of which belonged to Ascomycota (51 %) and Basidiomycota (45 %). Records of fungal species and plant species (218) for this area yielded a fungus to plant species ratio of 4:1, with a plant species accumulation curve that reached saturation. The three years of monitoring, however, were not sufficient to reveal the total fungal species richness and estimation factors showed that a fungus to plant species ratio of 6:1 may be reached by further sampling efforts. The effect of climatic conditions on fungal species richness differed depending on the taxonomic and ecological group, with temporal patterns of occurrence of Basidiomycota and mycorrhizal fungi being strongly associated with temperature and humidity, whereas the other fungal groups were only weakly related to abiotic conditions. In conclusion, long-term, monthly surveys over several years yield a higher diversity of macroscopically visible fungi than standard samplings of fungi in autumn. The association of environmental variables with the occurrence of specific fungal guilds may help to improve estimators of fungal richness in temperate regions.
The Brachybasidiaceae are a family of 22 known species of plant-parasitic microfungi belonging to Exobasidiales, Basidiomycota. Within this family, species of the largest genus Kordyana develop balls of basidia on top of stomatal openings. Basidial cells originate from fungal stroma filling substomatal chambers. Species of Kordyana typically infect species of Commelinaceae. During fieldwork in the neotropics, fungi morphologically similar to Kordyana spp. were found on Goeppertia spp. (syn. Calathea spp., Marantaceae), namely on G. panamensis in Panama and on G. propinqua in Bolivia. These specimens are proposed as representatives of a genus new to science, Marantokordyana, based on the distinct host family and molecular sequence data of ITS and LSU rDNA regions. The specimens on the two host species represent two species new to science, M. oberwinkleriana on G. panamensis and M. boliviana on G. propinqua. They differ by the size and shape of their basidia, molecular sequence data of ITS and LSU rDNA regions, and host plant species. In the past, the understanding of Brachybasidiaceae at order and family level was significantly improved by investigation realized by Franz Oberwinkler and his collaborators at the University of Tübingen, Germany. On species level, however, our knowledge is still very poor due to incomplete species descriptions of several existing names in literature, scarceness of specimens, as well as sequence data lacking for many taxa and for further barcode regions. Especially species of Kordyana and species of Dicellomyces are in need of revision.
Janthinobacterium and Duganella are well-known for their antifungal effects. Surprisingly, almost nothing is known on molecular aspects involved in the close bacterium-fungus interaction. To better understand this interaction, we established the genomes of 11 Janthinobacterium and Duganella isolates in combination with phylogenetic and functional analyses of all publicly available genomes. Thereby, we identified a core and pan genome of 1058 and 23,628 genes. All strains encoded secondary metabolite gene clusters and chitinases, both possibly involved in fungal growth suppression. All but one strain carried a single gene cluster involved in the biosynthesis of alpha-hydroxyketone-like autoinducer molecules, designated JAI-1. Genome-wide RNA-seq studies employing the background of two isolates and the corresponding JAI-1 deficient strains identified a set of 45 QS-regulated genes in both isolates. Most regulated genes are characterized by a conserved sequence motif within the promoter region. Among the most strongly regulated genes were secondary metabolite and type VI secretion system gene clusters. Most intriguing, co-incubation studies of J. sp. HH102 or its corresponding JAI-1 synthase deletion mutant with the plant pathogen Fusarium graminearum provided first evidence of a QS-dependent interaction with this pathogen.
In China and other countries of East Asia, so-called Ling-zhi or Reishi mushrooms are used in traditional medicine since several centuries. Although the common practice to apply the originally European name ‘Ganoderma lucidum’ to these fungi has been questioned by several taxonomists, this is still generally done in recent publications and with commercially cultivated strains. In the present study, two commercially sold strains of ‘G. lucidum’, M9720 and M9724 from the company Mycelia bvba (Belgium), are compared for their fruiting body (basidiocarp) morphology combined with molecular phylogenetic analyses, and for their secondary metabolite profile employing an ultra-performance liquid chromatography–electrospray ionization mass spectrometry (UPLC–ESIMS) in combination with a high resolution electrospray ionization mass spectrometry (HR-ESI-MS). According to basidiocarp morphology, the strain M9720 was identified as G. lucidum s.str. whereas M9724 was determined as Ganoderma lingzhi. In molecular phylogenetic analyses, the M9720 ITS and beta-tubulin sequences grouped with sequences of G. lucidum s.str. from Europe whereas those from M9724 clustered with sequences of G. lingzhi from East Asia. We show that an ethanol extract of ground basidiocarps from G. lucidum (M9720) contains much less triterpenic acids than found in the extract of G. lingzhi (M9724). The high amount of triterpenic acids accounts for the bitter taste of the basidiocarps of G. lingzhi (M9724) and of its ethanol extract. Apparently, triterpenic acids of G. lucidum s.str. are analyzed here for the first time. These results demonstrate the importance of taxonomy for commercial use of fungi.