Refine
Year of publication
Document Type
- Article (19)
- Contribution to a Periodical (1)
- Preprint (1)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Ascomycota (3)
- Basidiomycota (2)
- Fungi (2)
- Taxonomy (2)
- 1 new taxon (1)
- Anamorphic fungi (1)
- Benin (1)
- Biodiversity (1)
- Black mildews (1)
- Bolivia (1)
Foliar fungal communities of plants are diverse and ubiquitous. In grasses endophytes may increase host fitness; in trees, their ecological roles are poorly understood. We investigated whether the genotype of the host tree influences community structure of foliar fungi. We sampled leaves from genotyped balsam poplars from across the species' range, and applied 454 amplicon sequencing to characterize foliar fungal communities. At the time of the sampling the poplars had been growing in a common garden for two years. We found diverse fungal communities associated with the poplar leaves. Linear discriminant analysis and generalized linear models showed that host genotypes had a structuring effect on the composition of foliar fungal communities. The observed patterns may be explained by a filtering mechanism which allows the trees to selectively recruit fungal strains from the environment. Alternatively, host genotype-specific fungal communities may be present in the tree systemically, and persist in the host even after two clonal reproductions. Both scenarios are consistent with host tree adaptation to specific foliar fungal communities and suggest that there is a functional basis for the strong biotic interaction.
This study aims at characterizing the diversity and temporal changes of species richness and composition of fungi in an ecotone of a forest border and a meadow in the Taunus mountain range in Germany. All macroscopically visible, epigeous fungi and vascular plants were sampled monthly over three years, together with climatic variables like humidity and temperature that influence fungal diversity and composition as shown by previous studies. In this mosaic landscape, a total of 855 fungal species were collected and identified based on morphological features, the majority of which belonged to Ascomycota (51 %) and Basidiomycota (45 %). Records of fungal species and plant species (218) for this area yielded a fungus to plant species ratio of 4:1, with a plant species accumulation curve that reached saturation. The three years of monitoring, however, were not sufficient to reveal the total fungal species richness and estimation factors showed that a fungus to plant species ratio of 6:1 may be reached by further sampling efforts. The effect of climatic conditions on fungal species richness differed depending on the taxonomic and ecological group, with temporal patterns of occurrence of Basidiomycota and mycorrhizal fungi being strongly associated with temperature and humidity, whereas the other fungal groups were only weakly related to abiotic conditions. In conclusion, long-term, monthly surveys over several years yield a higher diversity of macroscopically visible fungi than standard samplings of fungi in autumn. The association of environmental variables with the occurrence of specific fungal guilds may help to improve estimators of fungal richness in temperate regions.
The Brachybasidiaceae are a family of 22 known species of plant-parasitic microfungi belonging to Exobasidiales, Basidiomycota. Within this family, species of the largest genus Kordyana develop balls of basidia on top of stomatal openings. Basidial cells originate from fungal stroma filling substomatal chambers. Species of Kordyana typically infect species of Commelinaceae. During fieldwork in the neotropics, fungi morphologically similar to Kordyana spp. were found on Goeppertia spp. (syn. Calathea spp., Marantaceae), namely on G. panamensis in Panama and on G. propinqua in Bolivia. These specimens are proposed as representatives of a genus new to science, Marantokordyana, based on the distinct host family and molecular sequence data of ITS and LSU rDNA regions. The specimens on the two host species represent two species new to science, M. oberwinkleriana on G. panamensis and M. boliviana on G. propinqua. They differ by the size and shape of their basidia, molecular sequence data of ITS and LSU rDNA regions, and host plant species. In the past, the understanding of Brachybasidiaceae at order and family level was significantly improved by investigation realized by Franz Oberwinkler and his collaborators at the University of Tübingen, Germany. On species level, however, our knowledge is still very poor due to incomplete species descriptions of several existing names in literature, scarceness of specimens, as well as sequence data lacking for many taxa and for further barcode regions. Especially species of Kordyana and species of Dicellomyces are in need of revision.
Entoloma (Agaricales, Basidiomycota) is a species-rich genus with approximately 2000 species known worldwide. In Central America, however, information about the species of this genus is sparse, despite the generally high biodiversity in this region. Recently, 124 specimens of Entoloma were collected in Panama, Chiriquí Province. In the present publication, the morphology of 20 species represented by more than one specimen is described and depicted with photographs, line drawings, and scanning electron micrographs. Molecular phylograms based on ITS or concatenated ITS and partial nc LSU rDNA sequences are provided. The taxonomic status of these species is evaluated and 17 species of Entoloma are described as new to science. Only one species could be assigned to an already known species, viz. Entoloma belouvense. Nolanea albertinae, described from Brazil, appeared similar and is combined in E. belouvense on varietal level. The identifications of two further species are uncertain. At least 30 other species, including potentially new species, cannot formally be described due to insufficient material. A preliminary key to the species of the genus Entoloma in Panama is provided. The spatial shape of the polyhedroid basidiospores of Entoloma spp. is discussed based on literature and the micrographs generated for the present study. Our re-evaluations indicate that the type of polyhedroid basidiospore and the structure of its base are not reliable as diagnostic characters for the delimitation of subgenera in Entoloma.
Three fungi associated with living leaves of plants are new records for Panama: Annellophora phoenicis causing leaf spots of Cocos nucifera (Arecaceae), Cercospora corniculatae (C. apii s. lat.) on living leaves of Oxalis barrelieri (Oxalidaceae) with and without discoloration, and Sclerotium coffeicola on zonate leaf spots of Annona montana (Annonaceae) and Dioscorea alata (Dioscoreaceae). Some records of A. phoenicis and S. coffeicola relevant for known geographical distribution and available by literature are critically revised.
Five new species belonging to Hermatomyces (Hermatomycetaceae, Pleosporales) are described based on morphological investigations of specimens collected on rotten twigs and stems of various plants in Panama as well as phylogenetic analyses of sequence data of nuclear ribosomal and protein coding genes (EF1-α, RPB2, β-TUB). The new species are described as: Hermatomyces bifurcatus, H. constrictus, H. megasporus, H. sphaericoides, and H. verrucosus spp. nov. Previously described species such as H. sphaericus and H. tucumanensis were identified among the studied specimens. The new combination, H. reticulatus, is made for Subicularium reticulatum based on examination of the holotype and fresh collections. Hermatomyces subiculosus, originally described from Thailand, is reduced to synonymy with H. reticulatus; H. tectonae is synonymized under H. sphaericus based on morphological and molecular evidence; and H. chiangmaiensis and H. thailandicus are considered later synonyms of H. krabiensis and H. indicus, respectively. The type material of Scyphostroma mirum was found to be conspecific with H. tucumanensis and, therefore, the generic name Hermatomyces should be conserved or protected against the older name Scyphostroma and the binomial H. tucumanensis against S. mirum. Sixteen species of Hermatomyces are recognized, their distinctive characteristics are highlighted in line drawings and a key is provided for their identification. The peculiar morphology and consistent phylogeny of new and previously known Hermatomyces species supports the recognition of the recently introduced monotypic family Hermatomycetaceae as a well delimited monophyletic taxon within the order Pleosporales.
Janthinobacterium and Duganella are well-known for their antifungal effects. Surprisingly, almost nothing is known on molecular aspects involved in the close bacterium-fungus interaction. To better understand this interaction, we established the genomes of 11 Janthinobacterium and Duganella isolates in combination with phylogenetic and functional analyses of all publicly available genomes. Thereby, we identified a core and pan genome of 1058 and 23,628 genes. All strains encoded secondary metabolite gene clusters and chitinases, both possibly involved in fungal growth suppression. All but one strain carried a single gene cluster involved in the biosynthesis of alpha-hydroxyketone-like autoinducer molecules, designated JAI-1. Genome-wide RNA-seq studies employing the background of two isolates and the corresponding JAI-1 deficient strains identified a set of 45 QS-regulated genes in both isolates. Most regulated genes are characterized by a conserved sequence motif within the promoter region. Among the most strongly regulated genes were secondary metabolite and type VI secretion system gene clusters. Most intriguing, co-incubation studies of J. sp. HH102 or its corresponding JAI-1 synthase deletion mutant with the plant pathogen Fusarium graminearum provided first evidence of a QS-dependent interaction with this pathogen.
Kálmán Vánky (15th of June 1930–18th of October 2021) was arguably the most prolific researcher of smut fungi so far. He published more than 1000 taxonomic novelties, and crowned his outstanding oeuvre with the most comprehensive monograph of the smut fungi (Smut Fungi of the World) written to date.
In China and other countries of East Asia, so-called Ling-zhi or Reishi mushrooms are used in traditional medicine since several centuries. Although the common practice to apply the originally European name ‘Ganoderma lucidum’ to these fungi has been questioned by several taxonomists, this is still generally done in recent publications and with commercially cultivated strains. In the present study, two commercially sold strains of ‘G. lucidum’, M9720 and M9724 from the company Mycelia bvba (Belgium), are compared for their fruiting body (basidiocarp) morphology combined with molecular phylogenetic analyses, and for their secondary metabolite profile employing an ultra-performance liquid chromatography–electrospray ionization mass spectrometry (UPLC–ESIMS) in combination with a high resolution electrospray ionization mass spectrometry (HR-ESI-MS). According to basidiocarp morphology, the strain M9720 was identified as G. lucidum s.str. whereas M9724 was determined as Ganoderma lingzhi. In molecular phylogenetic analyses, the M9720 ITS and beta-tubulin sequences grouped with sequences of G. lucidum s.str. from Europe whereas those from M9724 clustered with sequences of G. lingzhi from East Asia. We show that an ethanol extract of ground basidiocarps from G. lucidum (M9720) contains much less triterpenic acids than found in the extract of G. lingzhi (M9724). The high amount of triterpenic acids accounts for the bitter taste of the basidiocarps of G. lingzhi (M9724) and of its ethanol extract. Apparently, triterpenic acids of G. lucidum s.str. are analyzed here for the first time. These results demonstrate the importance of taxonomy for commercial use of fungi.