• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Behringer, Michael (12)
  • Roth, Christian (3)
  • Willberg, Christina (3)
  • Franz, Alexander (2)
  • Granacher, Urs (2)
  • Peitz, Matti (2)
  • Rettenmaier, Lukas (2)
  • Berndt, Felix (1)
  • Frank, Dirk (1)
  • Freiwald, Jürgen (1)
+ more

Year of publication

  • 2021 (5)
  • 2018 (2)
  • 2019 (2)
  • 2020 (2)
  • 2022 (1)

Document Type

  • Article (11)
  • Contribution to a Periodical (1)

Language

  • English (11)
  • German (1)

Has Fulltext

  • yes (12)

Is part of the Bibliography

  • no (12)

Keywords

  • BFR training (2)
  • Legs (2)
  • Running (2)
  • Strength training (2)
  • Tensiomyography (2)
  • adaptations to microgravity (2)
  • exercise countermeasure (2)
  • fat-free-mass (2)
  • human space flight (2)
  • muscle quality (2)
+ more

Institute

  • Sportwissenschaften (6)
  • Psychologie und Sportwissenschaften (5)
  • Präsidium (1)

12 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
"Mehr Wissenschaft für die Fitness" (2022)
Behringer, Michael ; Frank, Dirk
Sportwissenschaftler Michael Behringer über den Fitnesswissenschaftskongress, der am 16. und 17. September 2022 erstmals an der Goethe-Universität stattfindet.
Correction : a systematic review on the effects of resistance and plyometric training on physical fitness in youth - what do comparative studies tell us? (2018)
Peitz, Matti ; Behringer, Michael ; Granacher, Urs
There are errors in the Funding section. The correct funding information is as follows: This study is part of the research project "Resistance Training in Youth Athletes" that was funded by the German Federal Institute of Sport Science (ZMVI1-08190114-18). In addition, we acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) and Open Access Publishing Fund of University of Potsdam, Germany. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
A systematic review on the effects of resistance and plyometric training on physical fitness in youth - what do comparative studies tell us? (2018)
Peitz, Matti ; Behringer, Michael ; Granacher, Urs
Introduction: To date, several meta-analyses clearly demonstrated that resistance and plyometric training are effective to improve physical fitness in children and adolescents. However, a methodological limitation of meta-analyses is that they synthesize results from different studies and hence ignore important differences across studies (i.e., mixing apples and oranges). Therefore, we aimed at examining comparative intervention studies that assessed the effects of age, sex, maturation, and resistance or plyometric training descriptors (e.g., training intensity, volume etc.) on measures of physical fitness while holding other variables constant. Methods: To identify relevant studies, we systematically searched multiple electronic databases (e.g., PubMed) from inception to March 2018. We included resistance and plyometric training studies in healthy young athletes and non-athletes aged 6 to 18 years that investigated the effects of moderator variables (e.g., age, maturity, sex, etc.) on components of physical fitness (i.e., muscle strength and power). Results: Our systematic literature search revealed a total of 75 eligible resistance and plyometric training studies, including 5,138 participants. Mean duration of resistance and plyometric training programs amounted to 8.9 ± 3.6 weeks and 7.1±1.4 weeks, respectively. Our findings showed that maturation affects plyometric and resistance training outcomes differently, with the former eliciting greater adaptations pre-peak height velocity (PHV) and the latter around- and post-PHV. Sex has no major impact on resistance training related outcomes (e.g., maximal strength, 10 repetition maximum). In terms of plyometric training, around-PHV boys appear to respond with larger performance improvements (e.g., jump height, jump distance) compared with girls. Different types of resistance training (e.g., body weight, free weights) are effective in improving measures of muscle strength (e.g., maximum voluntary contraction) in untrained children and adolescents. Effects of plyometric training in untrained youth primarily follow the principle of training specificity. Despite the fact that only 6 out of 75 comparative studies investigated resistance or plyometric training in trained individuals, positive effects were reported in all 6 studies (e.g., maximum strength and vertical jump height, respectively). Conclusions: The present review article identified research gaps (e.g., training descriptors, modern alternative training modalities) that should be addressed in future comparative studies.
High-protein energy-restriction: effects on body composition, contractile properties, mood, and sleep in active young college students (2021)
Roth, Christian ; Rettenmaier, Lukas ; Behringer, Michael
Background: It is often advised to ensure a high-protein intake during energy-restricted diets. However, it is unclear whether a high-protein intake is able to maintain muscle mass and contractility in the absence of resistance training. Materials and Methods: After 1 week of body mass maintenance (45 kcal/kg), 28 male college students not performing resistance training were randomized to either the energy-restricted (ER, 30 kcal/kg, n = 14) or the eucaloric control group (CG, 45 kcal/kg, n = 14) for 6 weeks. Both groups had their protein intake matched at 2.8 g/kg fat-free-mass and continued their habitual training throughout the study. Body composition was assessed weekly using multifrequency bioelectrical impedance analysis. Contractile properties of the m. rectus femoris were examined with Tensiomyography and MyotonPRO at weeks 1, 3, and 5 along with sleep (PSQI) and mood (POMS). Results: The ER group revealed greater reductions in body mass (Δ −3.22 kg vs. Δ 1.90 kg, p < 0.001, partial η2 = 0.360), lean body mass (Δ −1.49 kg vs. Δ 0.68 kg, p < 0.001, partial η2 = 0.152), body cell mass (Δ −0.85 kg vs. Δ 0.59 kg, p < 0.001, partial η2 = 0.181), intracellular water (Δ −0.58 l vs. Δ 0.55 l, p < 0.001, partial η2 = 0.445) and body fat percentage (Δ −1.74% vs. Δ 1.22%, p < 0.001, partial η2 = 433) compared to the CG. Contractile properties, sleep onset, sleep duration as well as depression, fatigue and hostility did not change (p > 0.05). The PSQI score (Δ −1.43 vs. Δ −0.64, p = 0.006, partial η2 = 0.176) and vigor (Δ −2.79 vs. Δ −4.71, p = 0.040, partial η2 = 0.116) decreased significantly in the ER group and the CG, respectively. Discussion: The present data show that a high-protein intake alone was not able to prevent lean mass loss associated with a 6-week moderate energy restriction in college students. Notably, it is unknown whether protein intake at 2.8 g/kg fat-free-mass prevented larger decreases in lean body mass. Muscle contractility was not negatively altered by this form of energy restriction. Sleep quality improved in both groups. Whether these advantages are due to the high-protein intake cannot be clarified and warrants further study. Although vigor was negatively affected in both groups, other mood parameters did not change.
Low-intensity blood flow restriction calf muscle training leads to similar functional and structural adaptations than conventional low-load strength training: A randomized controlled trial (2020)
Gavanda, Simon ; Isenmann, Eduard ; Schlöder, Yvonne ; Roth, Roland ; Freiwald, Jürgen ; Schiffer, Thorsten ; Geisler, Stephan ; Behringer, Michael
The purpose of this study was to investigate whether a six-week, twice weekly resistance training (4 sets at 30% 1-RM until failure) with practical blood flow restriction (BFR) using 7cm wide cuffs with a twist lock placed below the patella is superior to training without BFR (NoBFR) concerning muscle mass and strength gains in calf muscles. A two-group (BFR n = 12, mean age 27.33 (7.0) years, training experience 7.3 (7.0) years; NoBFR n = 9, mean age 28.9 (7.4) years, training experience 7.1 (6.6) years) randomized matched pair design based on initial 1-RM was used to assess the effects on structural and functional adaptations in healthy males (Perometer calf volume [CV], gastrocnemius muscle thickness using ultrasound [MT], 7-maximal hopping test for leg stiffness [LS], 1-RM smith machine calf raise [1-RM], and visual analogue scale as a measure of pain intensity [VAS]). The mean number of repetitions completed per training session across the intervention period was higher in the NoBFR group compared to the BFR group (70 (16) vs. 52 (9), p = 0.002). VAS measured during the first session increased similarly in both groups from first to fourth set (p<0.001). No group effects or time×group interactions were found for CV, MT, LS, and 1-RM. However, there were significant time effects for MT (BFR +0.07 cm; NoBFR +0.04; p = 0.008), and 1-RM (BFR +40 kg; NoBFR +34 kg; p<0.001). LS and CV remained unchanged through training. VAS in both groups were similar, and BFR and NoBFR were equally effective for increasing 1-RM and MT in trained males. However, BFR was more time efficient, due to lesser repetition per training session.
Invasive assessment of hemodynamic, metabolic and ionic consequences during blood flow restriction training (2020)
Franz, Alexander ; Berndt, Felix ; Raabe, Joachim ; Harmsen, Jan-Frieder ; Zilkens, Christoph ; Behringer, Michael
Purpose: Medically recommended training often faces the dilemma that necessary mechanical intensities for muscle adaptations exceed patients' physical capacity. In this regard, blood flow restriction (BFR) training is becoming increasingly popular because it enables gains in muscle mass and strength despite using low-mechanical loads combined with external venous occlusion. Since the underlying mechanisms are still unknown, we applied invasive measurements during exercise with and without BFR to promote physiological understanding and safety of this popular training technique. Methods: In a randomized cross-over design, ten healthy men (28.1 ± 6.5 years) underwent two trials of unilateral biceps curls either with (BFR) and without BFR (CON). For analysis of changes in intravascular pressures, blood gases, oximetry and electrolytes, an arterial and a venous catheter were placed at the exercising arm before exercise. Arterial and venous blood gases and intravascular pressures were analyzed before, during and 5 min after exercise. Results: Intravascular pressures in the arterial and venous system were more increased during exercise with BFR compared to CON (p < 0.001). Furthermore, arterial and venous blood gas analyses revealed a BFR-induced metabolic acidosis (p < 0.05) with increased lactate production (p < 0.05) and associated elevations in [K+], [Ca2+] and [Na+] (p < 0.001). Conclusion: The present study describes for the first time the local physiological changes during BFR training. While BFR causes greater hypertension in the arterial and venous system of the exercising extremity, observed electrolyte shifts corroborate a local metabolic acidosis with concurrent rises in [K+] and [Na+]. Although BFR could be a promising new training concept for medical application, its execution is associated with comprehensive physiological challenges.
Corrigendum : application of blood flow restriction to optimize exercise countermeasures for human space flight (2019)
Behringer, Michael ; Willberg, Christina
In the original article, there was an error. The International Space Station Expedition was incorrectly referred to as "the Skylab Expedition 18." A correction has been made to the In-Flight Protocols section ...
Application of blood flow restriction to optimize exercise countermeasures for human space flight (2019)
Behringer, Michael ; Willberg, Christina
In recent years there has been a strong increase in publications on blood flow restriction (BFR) training. In particular, the fact that this type of training requires only low resistance to induce muscle strength and mass gains, makes BFR training interesting for athletes and scientists alike. For the same reason this type of training is particularly interesting for astronauts working out in space. Lower resistance during training would have the advantage of reducing the risk of strain-induced injuries. Furthermore, strength training with lower resistances would have implications for the equipment required for training under microgravity conditions, as significantly lower resistances have to be provided by the training machines. Even though we are only about to understand the effects of blood flow restriction on exercise types other than low-intensity strength training, the available data indicate that BFR of leg muscles is also able to improve the training effects of walking or running at slow speeds. The underlying mechanisms of BFR-induced functional and structural adaptations are still unclear. An essential aspect seems to be the premature fatigue of Type-I muscle fibers, which requires premature recruitment of Type-II muscle fibers to maintain a given force output. Other theories assume that cell swelling, anabolic hormones, myokines and reactive oxygen species are involved in the mediation of BFR training-related effects. This review article is intended to summarize the main advantages and disadvantages, but also the potential risks of such training for astronauts.
Corrigendum: High-protein energy-restriction: effects on body composition, contractile properties, mood, and sleep in active young college students (2021)
Roth, Christian ; Rettenmaier, Lukas ; Behringer, Michael
Korrektur zu: Roth C, Rettenmaier L and Behringer M (2021) High-Protein Energy-Restriction: Effects on Body Composition, Contractile Properties, Mood, and Sleep in Active Young College Students. Front. Sports Act. Living 3:683327. https://doi.org/10.3389/fspor.2021.683327
Is "delayed onset muscle soreness" a false friend? The potential implication of the fascial connective tissue in post-exercise discomfort (2021)
Wilke, Jan ; Behringer, Michael
Strenuous and unaccustomed exercise frequently lead to what has been coined “delayed onset muscle soreness” (DOMS). As implied by this term, it has been proposed that the associated pain and stiffness stem from micro-lesions, inflammation, or metabolite accumulation within the skeletal muscle. However, recent research points towards a strong involvement of the connective tissue. First, according to anatomical studies, the deep fascia displays an intimate structural relationship with the underlying skeletal muscle and may therefore be damaged during excessive loading. Second, histological and experimental studies suggest a rich supply of algogenic nociceptors whose stimulation evokes stronger pain responses than muscle irritation. Taken together, the findings support the hypothesis that DOMS originates in the muscle-associated connective tissue rather than in the muscle itself. Sports and fitness professionals designing exercise programs should hence consider fascia-oriented methods and techniques (e.g., foam rolling, collagen supplementation) when aiming to treat or prevent DOMS.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks