### Refine

#### Document Type

- Article (12)

#### Language

- English (12)

#### Has Fulltext

- yes (12)

#### Is part of the Bibliography

- no (12)

#### Institute

- Physik (12)

The unified model and the collective giant-dipole-resonance model are unified. The resulting energy spectrum and the transition probabilities are derived. A new approximate selection rule involving the symmetry of the γ vibrations is established. It is verified that the main observable features in the photon-absorption cross section are not influenced by the odd particle, despite the considerably richer spectrum of states as compared to even-even nuclei.

A method is proposed by which the eigenstates and the eigenvalues of the S matrix, i.e., the eigenchannels, can be directly computed from the nuclear problem, for example, from the shell model. The calculation of all cross sections, viz., partial and total cross sections, is then exceedingly simple. The characteristics of the eigenchannels are described and the relation with other reaction theories is briefly discussed.

The rotation-vibration model and the hydrodynamic dipole-oscillation model are unified. A coupling between the dipole oscillations and the quadrupole vibrations is introduced in the adiabatic approximation. The dipole oscillations act as a "driving force" for the quadrupole vibrations and stabilize the intrinsic nucleus in a nonaxially symmetric equilibrium shape. The higher dipole resonance splits into two peaks separated by about 1.5-2 MeV. On top of the several giant resonances occur bands due to rotations and vibrations of the intrinsic nucleus. The dipole operator is established in terms of the collective coordinates and the γ-absorption cross section is derived. For the most important 1- levels the relative dipole excitation is estimated. It is found that some of the dipole strength of the higher giant resonance states is shared with those states in which one surface vibration quantum is excited in addition to the giant resonance.

The total particle-particle SJ matrix of O16 for spin J=1- and excitation energies between 15 and 27 MeV has been calculated in the eigenchannel reaction theory for several parameters of the Saxon-Woods potential and the two-body force. The many-body problem has been treated in the 1-particle-1-hole approximation. The photon channels have been included by perturbation theory. Surprisingly, the most important structure of the experimental cross sections is reproduced quite well in this simple approximation.

In heavy nuclei the damping of the giant resonance is due to thermalization of the energy rather than to direct emission of particles; the latter process is strongly inhibited by the angular-momentum barrier. The thermalization proceeds via inelastic collisions leading from the particle-hole state to two-particle-two-hole states. In heavy nuclei, several hundred such states are available at the energy of the giant dipole resonance. The rather large width of the giant resonance arises from the addition of many small partial widths of channels leading to the different two-particle-two-hole states. Both the density of the two-particle-two-hole states and the mean value of the interaction matrix elements between the particle-hole and two-particle-two-hole states are evaluated in a simplified square-well shell model. In a given nucleus the energy dependence of the widths is determined mainly by the density of states; the A dependence is determined mainly by the size of the matrix elements. For A ~ 200, we find 0.5 <= Γ <=2.5 MeV. The uncertainty in this value comes mostly from the uncertainty in the strength of the interaction. Representing the energy dependence of the width by a power law we find for the exponent the value ~ 1.8.

A method is developed for the calculation of resonant nuclear states which preserves as many features of the shell model as possible. It is an extension of the R-matrix theory. The necessary formulas are derived and a detailed description of the computational procedure is given. The method is valid up to the two-particle emission threshold. With the assumption of consecutive decay of the nucleus, the two-particle emission process can also be described. The treatment is antisymmetrized in all particles.

The theory of Raman scattering is extended to include electric-quadrupole radiation. The results obtained are used to compute the elastic and Raman scattering cross sections of heavy deformed nuclei. The dipole and quadrupole resonances are described by a previously developed theory which includes surface vibrations and rotations. The computed cross sections are compared with experimental data for all those nuclei where both absorption and scattering cross sections are available. Some discrepances still exist in certain details; however, the over-all agreement between theory and experiment is very good.

The modes and frequencies of the giant quadrupole resonance of heavy deformed nuclei have been calculated. The quadrupole operator is computed and the absorption cross section is derived. The quadrupole sum rule is discussed, and the relevant oscillator strengths have been evaluated for various orientations of the nucleus. The giant quadrupole resonances have energies between 20 and 25 MeV. The total absorption cross section is about 20% of the giant dipole absorption cross section. Of particular interest is the occurrence of the quadrupole mode which is sensitive to the nuclear radius in a direction of approximately θ=(1/4)π from the symmetry axis. This may give information on the details of the nuclear shape.