Refine
Year of publication
Document Type
- Article (33)
- Preprint (4)
- Conference Proceeding (3)
- Doctoral Thesis (2)
- Book (1)
Has Fulltext
- yes (43)
Is part of the Bibliography
- no (43)
Keywords
- Abdominal infections (1)
- Active middle ear implants (1)
- Acute calcolous cholecystitis (1)
- Alzheimer’s dementia (1)
- Amyloid-beta 42 (1)
- Anti-kaon–nucleon physics (1)
- Antibiotic (1)
- Antibody avidity (1)
- Assessment of care (1)
- Auditory system (1)
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Bipolar disorder (BD) is a leading contributor to the global burden of disease1. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown2. We analysed data from participants of European, East Asian, African American and Latino ancestries (n=158,036 BD cases, 2.8 million controls), combining Clinical, Community, and Self-reported samples. We identified 298 genome-wide significant loci in the multi-ancestry meta-analysis, a 4-fold increase over previous findings3, and identified a novel ancestry-specific association in the East Asian cohort. Integrating results from fine-mapping and other variant-to-gene mapping approaches identified 36 credible genes in the aetiology of BD. Genes prioritised through fine-mapping were enriched for ultra-rare damaging missense and protein-truncating variations in BD cases4, highlighting convergence of common and rare variant signals. We report differences in genetic architecture of BD depending on the source of patient ascertainment and on BD-subtype (BDI and BDII). Several analyses implicate specific cell types in BD pathophysiology, including GABAergic interneurons and medium spiny neurons. Together, these analyses provide novel insights into the genetic architecture and biological underpinnings of BD.
Background: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls.
Principal findings: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10−6) and 14 (IGHV1-67 p = 7.9×10−8) which indexed novel susceptibility loci.
Significance: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
The project focuses on the efficiency of combined technologies to reduce the release of micropollutants and bacteria into surface waters via sewage treatment plants of different size and via stormwater overflow basins of different types. As a model river in a highly populated catchment area, the river Schussen and, as a control, the river Argen, two tributaries of Lake Constance, Southern Germany, are under investigation in this project. The efficiency of the different cleaning technologies is monitored by a wide range of exposure and effect analyses including chemical and microbiological techniques as well as effect studies ranging from molecules to communities.
In this letter we report the first multi-differential measurement of correlated pion-proton pairs from 2 billion Au+Au collisions at sNN=2.42 GeV collected with HADES. In this energy regime the population of Δ(1232) resonances plays an important role in the way energy is distributed between intrinsic excitation energy and kinetic energy of the hadrons in the fireball. The triple differential d3N/dMπ±pdpTdy distributions of correlated π±p pairs have been determined by subtracting the πp combinatorial background using an iterative method. The invariant-mass distributions in the Δ(1232) mass region show strong deviations from a Breit-Wigner function with vacuum width and mass. The yield of correlated pion-proton pairs exhibits a complex isospin, rapidity and transverse-momentum dependence. In the invariant mass range 1.1<Minv(GeV/c2)<1.4, the yield is found to be similar for π+p and π−p pairs, and to follow a power law 〈Apart〉α, where 〈Apart〉 is the mean number of participating nucleons. The exponent α depends strongly on the pair transverse momentum (pT) while its pT-integrated and charge-averaged value is α=1.5±0.08st±0.2sy.
We present first data on sub-threshold production of Ks0 mesons and Λ hyperons in Au+Au collisions at sNN=2.4 GeV. We observe an universal 〈Apart〉 scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their 〈Apart〉 scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of them can simultaneously describe these observables with reasonable χ2 values.