Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Isotropization (1)
- Non-Equilibrium Physics (1)
- Plasma Instability (1)
- Quark-Gluon Plasma (1)
- Thermalization (1)
Institute
We determine the hard-loop resummed propagator in an anisotropic QCD plasma in general covariant gauges and define a potential between heavy quarks from the Fourier transform of its static limit. We find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment.
I discuss the physics of non-Abelian plasmas which are locally anisotropic in momentum space. Such momentum-space anisotropies are generated by the rapid longitudinal expansion of the matter created in the first 1 fm/c of an ultrarelativistic heavy ion collision. In contrast to locally isotropic plasmas anisotropic plasmas have a spectrum of soft unstable modes which are characterized by exponential growth of transverse chromo-magnetic/-electric fields at short times. This instability is the QCD analogue of the Weibel instability of QED. Parametrically the chromo-Weibel instability provides the fastest method for generation of soft background fields and dominates the short-time dynamics of the system. The existence of the chromo-Weibel instability has been proven using diagrammatic methods, transport theory, and numerical solution of classical Yang-Mills fields. I review the results obtained from each of these methods and discuss the numerical techniques which are being used to determine the late-time behavior of plasmas subject to a chromo-Weibel instability.