Refine
Year of publication
Document Type
- Article (33)
- Conference Proceeding (4)
- Preprint (3)
Language
- English (40)
Has Fulltext
- yes (40)
Is part of the Bibliography
- no (40)
Keywords
- schizophrenia (6)
- magnetoencephalography (4)
- predictive coding (4)
- MEG (3)
- information theory (3)
- Electroencephalography (2)
- Information theory (2)
- local information dynamics (2)
- neural oscillations (2)
- partial information decomposition (2)
Institute
Background: Cognitive dysfunctions represent a core feature of schizophrenia and a predictor for clinical outcomes. One possible mechanism for cognitive impairments could involve an impairment in the experience-dependent modifications of cortical networks.
Methods: To address this issue, we employed magnetoencephalography (MEG) during a visual priming paradigm in a sample of chronic patients with schizophrenia (n = 14), and in a group of healthy controls (n = 14). We obtained MEG-recordings during the presentation of visual stimuli that were presented three times either consecutively or with intervening stimuli. MEG-data were analyzed for event-related fields as well as spectral power in the 1–200 Hz range to examine repetition suppression and repetition enhancement. We defined regions of interest in occipital and thalamic regions and obtained virtual-channel data.
Results: Behavioral priming did not differ between groups. However, patients with schizophrenia showed prominently reduced oscillatory response to novel stimuli in the gamma-frequency band as well as significantly reduced repetition suppression of gamma-band activity and reduced repetition enhancement of beta-band power in occipital cortex to both consecutive repetitions as well as repetitions with intervening stimuli. Moreover, schizophrenia patients were characterized by a significant deficit in suppression of the C1m component in occipital cortex and thalamus as well as of the late positive component (LPC) in occipital cortex.
Conclusions: These data provide novel evidence for impaired repetition suppression in cortical and subcortical circuits in schizophrenia. Although behavioral priming was preserved, patients with schizophrenia showed deficits in repetition suppression as well as repetition enhancement in thalamic and occipital regions, suggesting that experience-dependent modification of neural circuits is impaired in the disorder.
TRENTOOL : an open source toolbox to estimate neural directed interactions with transfer entropy
(2011)
To investigate directed interactions in neural networks we often use Norbert Wiener's famous definition of observational causality. Wiener’s definition states that an improvement of the prediction of the future of a time series X from its own past by the incorporation of information from the past of a second time series Y is seen as an indication of a causal interaction from Y to X. Early implementations of Wiener's principle – such as Granger causality – modelled interacting systems by linear autoregressive processes and the interactions themselves were also assumed to be linear. However, in complex systems – such as the brain – nonlinear behaviour of its parts and nonlinear interactions between them have to be expected. In fact nonlinear power-to-power or phase-to-power interactions between frequencies are reported frequently. To cover all types of non-linear interactions in the brain, and thereby to fully chart the neural networks of interest, it is useful to implement Wiener's principle in a way that is free of a model of the interaction [1]. Indeed, it is possible to reformulate Wiener's principle based on information theoretic quantities to obtain the desired model-freeness. The resulting measure was originally formulated by Schreiber [2] and termed transfer entropy (TE). Shortly after its publication transfer entropy found applications to neurophysiological data. With the introduction of new, data efficient estimators (e.g. [3]) TE has experienced a rapid surge of interest (e.g. [4]). Applications of TE in neuroscience range from recordings in cultured neuronal populations to functional magnetic resonanace imaging (fMRI) signals. Despite widespread interest in TE, no publicly available toolbox exists that guides the user through the difficulties of this powerful technique. TRENTOOL (the TRansfer ENtropy TOOLbox) fills this gap for the neurosciences by bundling data efficient estimation algorithms with the necessary parameter estimation routines and nonparametric statistical testing procedures for comparison to surrogate data or between experimental conditions. TRENTOOL is an open source MATLAB toolbox based on the Fieldtrip data format. ...
Background: Transfer entropy (TE) is a measure for the detection of directed interactions. Transfer entropy is an information theoretic implementation of Wiener's principle of observational causality. It offers an approach to the detection of neuronal interactions that is free of an explicit model of the interactions. Hence, it offers the power to analyze linear and nonlinear interactions alike. This allows for example the comprehensive analysis of directed interactions in neural networks at various levels of description. Here we present the open-source MATLAB toolbox TRENTOOL that allows the user to handle the considerable complexity of this measure and to validate the obtained results using non-parametrical statistical testing. We demonstrate the use of the toolbox and the performance of the algorithm on simulated data with nonlinear (quadratic) coupling and on local field potentials (LFP) recorded from the retina and the optic tectum of the turtle (Pseudemys scripta elegans) where a neuronal one-way connection is likely present.
Results: In simulated data TE detected information flow in the simulated direction reliably with false positives not exceeding the rates expected under the null hypothesis. In the LFP data we found directed interactions from the retina to the tectum, despite the complicated signal transformations between these stages. No false positive interactions in the reverse directions were detected.
Conclusions: TRENTOOL is an implementation of transfer entropy and mutual information analysis that aims to support the user in the application of this information theoretic measure. TRENTOOL is implemented as a MATLAB toolbox and available under an open source license (GPL v3). For the use with neural data TRENTOOL seamlessly integrates with the popular FieldTrip toolbox.
Understanding causal relationships, or effective connectivity, between parts of the brain is of utmost importance because a large part of the brain’s activity is thought to be internally generated and, hence, quantifying stimulus response relationships alone does not fully describe brain dynamics. Past efforts to determine effective connectivity mostly relied on model based approaches such as Granger causality or dynamic causal modeling. Transfer entropy (TE) is an alternative measure of effective connectivity based on information theory. TE does not require a model of the interaction and is inherently non-linear. We investigated the applicability of TE as a metric in a test for effective connectivity to electrophysiological data based on simulations and magnetoencephalography (MEG) recordings in a simple motor task. In particular, we demonstrate that TE improved the detectability of effective connectivity for non-linear interactions, and for sensor level MEG signals where linear methods are hampered by signal-cross-talk due to volume conduction.
In complex networks such as gene networks, traffic systems or brain circuits it is important to understand how long it takes for the different parts of the network to effectively influence one another. In the brain, for example, axonal delays between brain areas can amount to several tens of milliseconds, adding an intrinsic component to any timing-based processing of information. Inferring neural interaction delays is thus needed to interpret the information transfer revealed by any analysis of directed interactions across brain structures. However, a robust estimation of interaction delays from neural activity faces several challenges if modeling assumptions on interaction mechanisms are wrong or cannot be made. Here, we propose a robust estimator for neuronal interaction delays rooted in an information-theoretic framework, which allows a model-free exploration of interactions. In particular, we extend transfer entropy to account for delayed source-target interactions, while crucially retaining the conditioning on the embedded target state at the immediately previous time step. We prove that this particular extension is indeed guaranteed to identify interaction delays between two coupled systems and is the only relevant option in keeping with Wiener’s principle of causality. We demonstrate the performance of our approach in detecting interaction delays on finite data by numerical simulations of stochastic and deterministic processes, as well as on local field potential recordings. We also show the ability of the extended transfer entropy to detect the presence of multiple delays, as well as feedback loops. While evaluated on neuroscience data, we expect the estimator to be useful in other fields dealing with network dynamics.
Oscillatory activity in human electro- or magnetoencephalogram has been related to cortical stimulus representations and their modulation by cognitive processes. Whereas previous work has focused on gamma-band activity (GBA) during attention or maintenance of representations, there is little evidence for GBA reflecting individual stimulus representations. The present study aimed at identifying stimulus-specific GBA components during auditory spatial short-term memory. A total of 28 adults were assigned to 1 of 2 groups who were presented with only right- or left-lateralized sounds, respectively. In each group, 2 sample stimuli were used which differed in their lateralization angles (15° or 45°) with respect to the midsagittal plane. Statistical probability mapping served to identify spectral amplitude differences between 15° versus 45° stimuli. Distinct GBA components were found for each sample stimulus in different sensors over parieto-occipital cortex contralateral to the side of stimulation peaking during the middle 200–300 ms of the delay phase. The differentiation between "preferred" and "nonpreferred" stimuli during the final 100 ms of the delay phase correlated with task performance. These findings suggest that the observed GBA components reflect the activity of distinct networks tuned to spatial sound features which contribute to the maintenance of task-relevant information in short-term memory.
Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis.
Speech production involves widely distributed brain regions. This MEG study focuses on the spectro-temporal dynamics that contribute to the setup of this network. In 21 participants performing a cue-target reading paradigm, we analyzed local oscillations during preparation for overt and covert reading in the time-frequency domain and localized sources using beamforming. Network dynamics were studied by comparing different dynamic causal models of beta phase coupling in and between hemispheres. While a broadband low frequency effect was found for any task preparation in bilateral prefrontal cortices, preparation for overt speech production was specifically associated with left-lateralized alpha and beta suppression in temporal cortices and beta suppression in motor-related brain regions. Beta phase coupling in the entire speech production network was modulated by anticipation of overt reading. We propose that the processes underlying the setup of the speech production network connect relevant brain regions by means of beta synchronization and prepare the network for left-lateralized information routing by suppression of inhibitory alpha and beta oscillations.
Network graphs have become a popular tool to represent complex systems composed of many interacting subunits; especially in neuroscience, network graphs are increasingly used to represent and analyze functional interactions between multiple neural sources. Interactions are often reconstructed using pairwise bivariate analyses, overlooking the multivariate nature of interactions: it is neglected that investigating the effect of one source on a target necessitates to take all other sources as potential nuisance variables into account; also combinations of sources may act jointly on a given target. Bivariate analyses produce networks that may contain spurious interactions, which reduce the interpretability of the network and its graph metrics. A truly multivariate reconstruction, however, is computationally intractable because of the combinatorial explosion in the number of potential interactions. Thus, we have to resort to approximative methods to handle the intractability of multivariate interaction reconstruction, and thereby enable the use of networks in neuroscience. Here, we suggest such an approximative approach in the form of an algorithm that extends fast bivariate interaction reconstruction by identifying potentially spurious interactions post-hoc: the algorithm uses interaction delays reconstructed for directed bivariate interactions to tag potentially spurious edges on the basis of their timing signatures in the context of the surrounding network. Such tagged interactions may then be pruned, which produces a statistically conservative network approximation that is guaranteed to contain non-spurious interactions only. We describe the algorithm and present a reference implementation in MATLAB to test the algorithm’s performance on simulated networks as well as networks derived from magnetoencephalographic data. We discuss the algorithm in relation to other approximative multivariate methods and highlight suitable application scenarios. Our approach is a tractable and data-efficient way of reconstructing approximative networks of multivariate interactions. It is preferable if available data are limited or if fully multivariate approaches are computationally infeasible.
Current theories of schizophrenia (ScZ) posit that the symptoms and cognitive dysfunctions arise from a dysconnection syndrome. However, studies that have examined this hypothesis with physiological data at realistic time scales are so far scarce. The current study employed a state-of-the-art approach using Magnetoencephalography (MEG) to test alterations in large-scale phase synchronization in a sample of n = 16 chronic ScZ patients, 10 males and n = 19 healthy participants, 10 males, during a perceptual closure task. We identified large-scale networks from source reconstructed MEG data using data-driven analyses of neuronal synchronization. Oscillation amplitudes and interareal phase-synchronization in the 3–120 Hz frequency range were estimated for 400 cortical parcels and correlated with clinical symptoms and neuropsychological scores. ScZ patients were characterized by a reduction in γ-band (30–120 Hz) oscillation amplitudes that was accompanied by a pronounced deficit in large-scale synchronization at γ-band frequencies. Synchronization was reduced within visual regions as well as between visual and frontal cortex and the reduction of synchronization correlated with elevated clinical disorganization. Accordingly, these data highlight that ScZ is associated with a profound disruption of transient synchronization, providing critical support for the notion that core aspect of the pathophysiology arises from an impairment in coordination of distributed neural activity.