Refine
Document Type
- Article (29)
Language
- English (29)
Has Fulltext
- yes (29)
Is part of the Bibliography
- no (29)
Keywords
- glioblastoma (9)
- hypoxia (4)
- Glioblastoma (3)
- mTOR (3)
- EGFR (2)
- Fasting (2)
- Glucose (2)
- Ketogenic diet (2)
- Leptin (2)
- Radiation (2)
Institute
Despite multidisciplinary local and systemic therapeutic approaches, the prognosis for most patients with brain metastases is still dismal. The role of adaptive and innate anti-tumor response including the Human Leukocyte Antigen (HLA) machinery of antigen presentation is still unclear. We present data on the HLA class II-chaperone molecule CD74 in brain metastases and its impact on the HLA peptidome complexity.
We analyzed CD74 and HLA class II expression on tumor cells in a subset of 236 human brain metastases, primary tumors and peripheral metastases of different entities in association with clinical data including overall survival. Additionally, we assessed whole DNA methylome profiles including CD74 promoter methylation and differential methylation in 21 brain metastases. We analyzed the effects of a siRNA mediated CD74 knockdown on HLA-expression and HLA peptidome composition in a brain metastatic melanoma cell line.
We observed that CD74 expression on tumor cells is a strong positive prognostic marker in brain metastasis patients and positively associated with tumor-infiltrating T-lymphocytes (TILs). Whole DNA methylome analysis suggested that CD74 tumor cell expression might be regulated epigenetically via CD74 promoter methylation. CD74high and TILhigh tumors displayed a differential DNA methylation pattern with highest enrichment scores for antigen processing and presentation. Furthermore, CD74 knockdown in vitro lead to a reduction of HLA class II peptidome complexity, while HLA class I peptidome remained unaffected.
In summary, our results demonstrate that a functional HLA class II processing machinery in brain metastatic tumor cells, reflected by a high expression of CD74 and a complex tumor cell HLA peptidome, seems to be crucial for better patient prognosis.
Meningioma surgery in patients ≥70 years of age: clinical outcome and validation of the SKALE score
(2021)
Along with increasing average life expectancy, the number of elderly meningioma patients has grown proportionally. Our aim was to evaluate whether these specific patients benefit from surgery and to investigate a previously published score for decision-making in meningioma patients (SKALE). Of 421 patients who underwent primary intracranial meningioma resection between 2009 and 2015, 71 patients were ≥70 years of age. We compared clinical data including World Health Organization (WHO) grade, MIB-1 proliferation index, Karnofsky Performance Status Scale (KPS), progression free survival (PFS) and mortality rate between elderly and all other meningioma patients. Preoperative SKALE scores (Sex, KPS, ASA score, location and edema) were determined for elderly patients. SKALE ≥8 was set for dichotomization to determine any association with outcome parameters. In 71 elderly patients (male/female 37/34) all data were available. Postoperative KPS was significantly lower in elderly patients (p < 0.0001). Pulmonary complications including pneumonia (10% vs. 3.2%; p = 0.0202) and pulmonary embolism (12.7% vs. 6%; p = 0.0209) occurred more frequently in our elderly cohort. Analyses of the Kaplan Meier curves revealed differences in three-month (5.6% vs. 0.3%; p = 0.0033), six-month (7% vs. 0.3%; p = 0.0006) and one-year mortality (8.5% vs. 0.3%; p < 0.0001) for elderly patients. Statistical analysis showed significant survival benefit in terms of one-year mortality for elderly patients with SKALE scores ≥8 (5.1 vs. 25%; p = 0.0479). According to our data, elderly meningioma patients face higher postoperative morbidity and mortality than younger patients. However, resection is reasonable for selected patients, particularly when reaching a SKALE score ≥ 8.
Hypoxia enhances the antiglioma cytotoxicity of b10, a glycosylated derivative of betulinic acid
(2014)
B10 is a glycosylated derivative of betulinic acid with promising activity against glioma cells. Lysosomal cell death pathways appear to be essential for its cytotoxicity. We investigated the influence of hypoxia, nutrient deprivation and current standard therapies on B10 cytotoxicity. The human glioma cell lines LN-308 and LNT-229 were exposed to B10 alone or together with irradiation, temozolomide, nutrient deprivation or hypoxia. Cell growth and viability were evaluated by crystal violet staining, clonogenicity assays, propidium iodide uptake and LDH release assays. Cell death was examined using an inhibitor of lysosomal acidification (bafilomycin A1), a cathepsin inhibitor (CA074-Me) and a short-hairpin RNA targeting cathepsin B. Hypoxia substantially enhanced B10-induced cell death. This effect was sensitive to bafilomycin A1 and thus dependent on hypoxia-induced lysosomal acidification. Cathepsin B appeared to mediate cell death because either the inhibitor CA074-Me or cathepsin B gene silencing rescued glioma cells from B10 toxicity under hypoxia. B10 is a novel antitumor agent with substantially enhanced cytotoxicity under hypoxia conferred by increased lysosomal cell death pathway activation. Given the importance of hypoxia for therapy resistance, malignant progression, and as a result of antiangiogenic therapies, B10 might be a promising strategy for hypoxic tumors like malignant glioma.
Immunohistochemical assessment of phosphorylated mTORC1-pathway proteins in human brain tumors
(2015)
Background: Current pathological diagnostics include the analysis of (epi-)genetic alterations as well as oncogenic pathways. Deregulated mammalian target of rapamycin complex 1 (mTORC1) signaling has been implicated in a variety of cancers including malignant gliomas and is considered a promising target in cancer treatment. Monitoring of mTORC1 activity before and during inhibitor therapy is essential. The aim of our study is to provide a recommendation and report on pitfalls in the use of phospho-specific antibodies against mTORC1-targets phospho-RPS6 (Ser235/236; Ser240/244) and phospho-4EBP1 (Thr37/46) in formalin fixed, paraffin embedded material.
Methods and findings: Primary, established cell lines and brain tumor tissue from routine diagnostics were assessed by immunocyto-, immunohistochemistry, immunofluorescent stainings and immunoblotting. For validation of results, immunoblotting experiments were performed. mTORC-pathway activation was pharmacologically inhibited by torin2 and rapamycin. Torin2 treatment led to a strong reduction of signal intensity and frequency of all tested antibodies. In contrast phospho-4EBP1 did not show considerable reduction in staining intensity after rapamycin treatment, while immunocytochemistry with both phospho-RPS6-specific antibodies showed a reduced signal compared to controls. Staining intensity of both phospho-RPS6-specific antibodies did not show considerable decrease in stability in a timeline from 0–230 minutes without tissue fixation, however we observed a strong decrease of staining intensity in phospho-4EBP1 after 30 minutes. Detection of phospho-signals was strongly dependent on tissue size and fixation gradient. mTORC1-signaling was significantly induced in glioblastomas although not restricted to cancer cells but also detectable in non-neoplastic cells.
Conclusion: Here we provide a recommendation for phospho-specific immunohistochemistry for patient-orientated therapy decisions and monitoring treatment response.
Recently, the conserved intracellular digestion mechanism ‘autophagy’ has been considered to be involved in early tumorigenesis and its blockade proposed as an alternative treatment approach. However, there is an ongoing debate about whether blocking autophagy has positive or negative effects in tumor cells. Since there is only poor data about the clinico-pathological relevance of autophagy in gliomas in vivo, we first established a cell culture based platform for the in vivo detection of the autophago-lysosomal components. We then investigated key autophagosomal (LC3B, p62, BAG3, Beclin1) and lysosomal (CTSB, LAMP2) molecules in 350 gliomas using immunohistochemistry, immunofluorescence, immunoblotting and qPCR. Autophagy was induced pharmacologically or by altering oxygen and nutrient levels. Our results show that autophagy is enhanced in astrocytomas as compared to normal CNS tissue, but largely independent from the WHO grade and patient survival. A strong upregulation of LC3B, p62, LAMP2 and CTSB was detected in perinecrotic areas in glioblastomas suggesting micro-environmental changes as a driver of autophagy induction in gliomas. Furthermore, glucose restriction induced autophagy in a concentration-dependent manner while hypoxia or amino acid starvation had considerably lesser effects. Apoptosis and autophagy were separately induced in glioma cells both in vitro and in vivo. In conclusion, our findings indicate that autophagy in gliomas is rather driven by micro-environmental changes than by primary glioma-intrinsic features thus challenging the concept of exploitation of the autophago-lysosomal network (ALN) as a treatment approach in gliomas.
BRAF V600E mutations occur frequently in malignant melanoma, but are rare in most malignant glioma subtypes. Besides, more benign brain tumors such as ganglioglioma, dysembryoblastic neuroepithelial tumours and supratentorial pilocytic astrocytomas, only pleomorphic xanthoastrocytomas (50-78%) and epitheloid glioblastoma (50%) regularly exhibit BRAF mutations. In the present study, we report on three patients with recurrent malignant gliomas harbouring a BRAF V600E mutation. All patients presented with markedly disseminated leptomeningeal disease at recurrence and had progressed after radiotherapy and alkylating chemotherapy. Therefore, estimated life expectancy at recurrence was a few weeks. All three patients received dabrafenib as a single agent and all showed a complete or nearly complete response. Treatment is ongoing and patients are stable for 27 months, 7 months and 3 months, respectively. One patient showed a dramatic radiologic and clinical response after one week of treatment. We were able to generate an ex vivo tumor cell culture from CSF in one patient. Treatment of this cell culture with dabrafenib resulted in reduced cell density and inhibition of ERK phosphorylation in vitro. To date, this is the first series on adult patients with BRAF-mutated malignant glioma and leptomeningeal dissemination treated with dabrafenib monotherapy. All patients showed a dramatic response with one patient showing an ongoing response for more than two years.
Linking epigenetic signature and metabolic phenotype in IDH mutant and IDH wildtype diffuse glioma
(2020)
Aims: Changes in metabolism are known to contribute to tumour phenotypes. If and how metabolic alterations in brain tumours contribute to patient outcome is still poorly understood. Epigenetics impact metabolism and mitochondrial function. The aim of this study is a characterisation of metabolic features in molecular subgroups of isocitrate dehydrogenase mutant (IDHmut) and isocitrate dehydrogenase wildtype (IDHwt) gliomas. Methods: We employed DNA methylation pattern analyses with a special focus on metabolic genes, large-scale metabolism panel immunohistochemistry (IHC), qPCR-based determination of mitochondrial DNA copy number and immune cell content using IHC and deconvolution of DNA methylation data. We analysed molecularly characterised gliomas (n = 57) for in depth DNA methylation, a cohort of primary and recurrent gliomas (n = 22) for mitochondrial copy number and validated these results in a large glioma cohort (n = 293). Finally, we investigated the potential of metabolic markers in Bevacizumab (Bev)-treated gliomas (n = 29). Results: DNA methylation patterns of metabolic genes successfully distinguished the molecular subtypes of IDHmut and IDHwt gliomas. Promoter methylation of lactate dehydrogenase A negatively correlated with protein expression and was associated with IDHmut gliomas. Mitochondrial DNA copy number was increased in IDHmut tumours and did not change in recurrent tumours. Hierarchical clustering based on metabolism panel IHC revealed distinct subclasses of IDHmut and IDHwt gliomas with an impact on patient outcome. Further quantification of these markers allowed for the prediction of survival under anti-angiogenic therapy. Conclusion: A mitochondrial signature was associated with increased survival in all analyses, which could indicate tumour subgroups with specific metabolic vulnerabilities.
Purpose: The prospective, randomized ERGO2 trial investigated the effect of calorie-restricted ketogenic diet and intermittent fasting (KD-IF) on re-irradiation for recurrent brain tumors. The study did not meet its primary endpoint of improved progression-free survival in comparison to standard diet (SD). We here report the results of the quality of life/neurocognition and a detailed analysis of the diet diaries. Methods: 50 patients were randomized 1:1 to re-irradiation combined with either SD or KD-IF. The KD-IF schedule included 3 days of ketogenic diet (KD: 21–23 kcal/kg/d, carbohydrate intake limited to 50 g/d), followed by 3 days of fasting and again 3 days of KD. Follow-up included examination of cognition, quality of life and serum samples. Results: The 20 patients who completed KD-IF met the prespecified goals for calorie and carbohydrate restriction. Substantial decreases in leptin and insulin and an increase in uric acid were observed. The SD group, of note, had a lower calorie intake than expected (21 kcal/kg/d instead of 30 kcal/kg/d). Neither quality of life nor cognition were affected by the diet. Low glucose emerged as a significant prognostic parameter in a best responder analysis. Conclusion: The strict caloric goals of the ERGO2 trial were tolerated well by patients with recurrent brain cancer. The short diet schedule led to significant metabolic changes with low glucose emerging as a candidate marker of better prognosis. The unexpected lower calorie intake of the control group complicates the interpretation of the results. Clinicaltrials.gov number: NCT01754350; Registration: 21.12.2012.
Purpose: The prospective, randomized ERGO2 trial investigated the effect of calorie-restricted ketogenic diet and intermittent fasting (KD-IF) on re-irradiation for recurrent brain tumors. The study did not meet its primary endpoint of improved progression-free survival in comparison to standard diet (SD). We here report the results of the quality of life/neurocognition and a detailed analysis of the diet diaries. Methods: 50 patients were randomized 1:1 to re-irradiation combined with either SD or KD-IF. The KD-IF schedule included 3 days of ketogenic diet (KD: 21–23 kcal/kg/d, carbohydrate intake limited to 50 g/d), followed by 3 days of fasting and again 3 days of KD. Follow-up included examination of cognition, quality of life and serum samples. Results: The 20 patients who completed KD-IF met the prespecified goals for calorie and carbohydrate restriction. Substantial decreases in leptin and insulin and an increase in uric acid were observed. The SD group, of note, had a lower calorie intake than expected (21 kcal/kg/d instead of 30 kcal/kg/d). Neither quality of life nor cognition were affected by the diet. Low glucose emerged as a significant prognostic parameter in a best responder analysis. Conclusion: The strict caloric goals of the ERGO2 trial were tolerated well by patients with recurrent brain cancer. The short diet schedule led to significant metabolic changes with low glucose emerging as a candidate marker of better prognosis. The unexpected lower calorie intake of the control group complicates the interpretation of the results. Clinicaltrials.gov number: NCT01754350; Registration: 21.12.2012.
Transfusion of red blood cells (RBC) in patients undergoing major elective cranial surgery is associated with increased morbidity, mortality and prolonged hospital length of stay (LOS). This retrospective single center study aims to identify the clinical outcome of RBC transfusions on skull base and non-skull base meningioma patients including the identification of risk factors for RBC transfusion. Between October 2009 and October 2016, 423 patients underwent primary meningioma resection. Of these, 68 (16.1%) received RBC transfusion and 355 (83.9%) did not receive RBC units. Preoperative anaemia rate was significantly higher in transfused patients (17.7%) compared to patients without RBC transfusion (6.2%; p = 0.0015). In transfused patients, postoperative complications as well as hospital LOS was significantly higher (p < 0.0001) compared to non-transfused patients. After multivariate analyses, risk factors for RBC transfusion were preoperative American Society of Anaesthesiologists (ASA) physical status score (p = 0.0247), tumor size (p = 0.0006), surgical time (p = 0.0018) and intraoperative blood loss (p < 0.0001). Kaplan-Meier curves revealed significant influence on overall survival by preoperative anaemia, RBC transfusion, smoking, cardiovascular disease, preoperative KPS ≤ 60% and age (elderly ≥ 75 years). We concluded that blood loss due to large tumors or localization near large vessels are the main triggers for RBC transfusion in meningioma patients paired with a potential preselection that masks the effect of preoperative anaemia in multivariate analysis. Further studies evaluating the impact of preoperative anaemia management for reduction of RBC transfusion are needed to improve the clinical outcome of meningioma patients.