Refine
Document Type
- Working Paper (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Customer Flow (1)
- Intermediary (1)
- Macroeconomic Announcements (1)
- Riskfree Rate (1)
- Treasury Futures (1)
Non-standard errors
(2021)
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in sample estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: non-standard errors. To study them, we let 164 teams test six hypotheses on the same sample. We find that non-standard errors are sizeable, on par with standard errors. Their size (i) co-varies only weakly with team merits, reproducibility, or peer rating, (ii) declines significantly after peer-feedback, and (iii) is underestimated by participants.
Macro announcements change the equilibrium riskfree rate. We find that treasury prices reflect part of the impact instantaneously, but intermediaries rely on their customer order flow in the 15 minutes after the announcement to discover the full impact. We show that this customer flow informativeness is strongest at times when analyst forecasts of macro variables are highly dispersed. We study 30 year treasury futures to identify the customer flow. We further show that intermediaries appear to benefit from privately recognizing informed customer flow, as, in the cross-section, their own-account trade profitability correlates with access to customer orders, controlling for volatility, competition, and the announcement surprise. These results suggest that intermediaries learn about equilibrium riskfree rates through customer orders.