• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Pleskova, Miriam (1)

Year of publication

  • 2005 (1)

Document Type

  • Doctoral Thesis (1)

Language

  • English (1)

Has Fulltext

  • yes (1)

Is part of the Bibliography

  • no (1)

Keywords

  • Enzymatische Regulation (1)
  • Mesangium (1)
  • NADPH-Oxidase (1)
  • Ratte (1)
  • Untereinheit (1)
  • Zelle (1)

Institute

  • Biochemie und Chemie (1)

1 search hit

  • 1 to 1
  • 10
  • 20
  • 50
  • 100
Regulation of the catalytic subunits of NADPH oxidase Nox1 and NOX4 in rat mesangial cells (2005)
Pleskova, Miriam
The generation of O2- by NADPH oxidaes was mainly attributed to immune cells that kill invading bacteria or cancer cells. But importantly, in the past several years, several homologs of the catalytic subunit gp91phox (Nox2) of the phagocytic NADPH oxidase have been identified in non-immune cells and tissues. Superoxide production derived from NADPH oxidaes has been shown to play a role not only in host defense but also in defined signaling cascades mediating growth and apoptosis. The aim of this work was to study the expression and the regulation of the”new” Nox isoforms in rat renal mesangial cells (MC). In particular the following results were achieved. 1) mRNA’s for both Nox1 and Nox4 were detected by RT-PCR. 2) Nox1 mRNA levels were increased upon exposure to basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF) and fetal calf serum (FCS) in a time- and dose-dependent manner. Exposure of MC to bFGF and FCS increased also basal production of reactive oxygen species (ROS) by MC. By contrast, Nox4 mRNA levels were not significantly affected by bFGF treatment, but were markedly down-regulated by PDGF and FCS. 3) To study the regulation of Nox1 on the protein level, an anti-Nox1 antibody was generated and characterized using affinity chromatography. Up-regulation of Nox1 expression by growth factors was confirmed also on the protein level. 4) Based on the already known cDNA sequence for Nox1, the transcriptional start site was determined by the “gene RACE” technique. 2547 bp of the genomic sequence of the 5´-flanking region of the Nox1 gene were cloned and sequenced using the „Genome-Walking“ method. To study the regulation of Nox1 transcription functional Nox1 promoter/luciferase fusions were be established. MC were transiently transfected with different promoter/luciferase constructs and stimulated with growth factors. By measuring luciferase activity it was determined that growth factors induced the Nox1 transcription and that the Nox1 core promoter is sufficient for the activation. 5) By measurement of superoxide radicals and analysis of Nox1 mRNA expression by quantitative RT-PCR (TaqMan) as well as protein level by Western blotting it could be shown that treatment of MC with NO donors inhibited the expression of Nox1 in a time- and dose-dependent manner. Moreover, using activators and inhibitors of the soluble guanylyl cyclase (sGC) it could be shown, that the activation of sGC mediates the effect of NO on Nox1 expression. However, NO had no inhibitory effect on Nox1 promoter activity. Experiments with the inhibitor of transcription, actinomycin D, suggest that NO-mediated regulation of Nox1 is triggered probably via post-transcriptional mechanisms. Nox4 is regulated on the mRNA levels in a similar manner as Nox1. 6) To analyze the sub-cellular localization of the Nox isoforms, coding sequences for Nox1 and Nox4 were fused together with green fluorescent protein into the pEGFP-N1 demonstrated that both isoforms are localized predominantly in the plasma membrane, but also in the perinuclear region and cytoplasm. However, the localization of Nox1 in the plasma membrane was more pronounced. 7) In addition to Nox1 and Nox4, mRNA of the newly identified NOXA1 that is a homolog of the p67phox subunit of NADPH oxidase was detected in MC by RT-PCR.
  • 1 to 1

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks