Refine
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- ADAM10 (1)
- CXCL16 (1)
- Event-by-event fluctuations (1)
- Relativistic Heavy Ions (1)
- diabetic nephropathy (1)
- event-by-event fluctuations (1)
- podocytes (1)
- primary tubular cells (1)
- relativistic heavy ions (1)
Institute
Diabetic nephropathy (DN) is a major cause of end-stage renal failure worldwide. Oxidative stress has been reported to be a major culprit of the disease and increased oxidized low density lipoprotein (oxLDL) immune complexes were found in patients with DN. In this study we present evidence, that CXCL16 is the main receptor in human podocytes mediating the uptake of oxLDL. In contrast, in primary tubular cells CD36 was mainly involved in the uptake of oxLDL. We further demonstrate that oxLDL down-regulated α3-integrin expression and increased the production of fibronectin in human podocytes. In addition, oxLDL uptake induced the production of reactive oxygen species (ROS) in human podocytes. Inhibition of oxLDL uptake by CXCL16 blocking antibodies abrogated the fibronectin and ROS production and restored α3 integrin expression in human podocytes. Furthermore we present evidence that hyperglycaemic conditions increased CXCL16 and reduced ADAM10 expression in podocytes. Importantly, in streptozotocin-induced diabetic mice an early induction of CXCL16 was accompanied by higher levels of oxLDL. Finally immunofluorescence analysis in biopsies of patients with DN revealed increased glomerular CXCL16 expression, which was paralleled by high levels of oxLDL. In summary, regulation of CXCL16, ADAM10 and oxLDL expression may be an early event in the onset of DN and therefore all three proteins may represent potential new targets for diagnosis and therapeutic intervention in DN.
We study forward-backward charge fluctuations to probe the correlations among produced particles in ultra relativistic heavy ion collisions. We develop a model that describes the forward-backward dynamical fluctuations and apply it to interpret the recent PHOBOS data. Within the present model, the dynamical fluctuations are related to the particle production mechanism via cluster decay and to long range correlations between the forward and backward rapidity hemispheres. We argue that with a tight centrality cut, PHOBOS may see a strong decrease of the dynamical fluctuations. Within the present model, this deterioration of the correlation among the produced hadrons can be interpreted as a sign for the production of a hot, dense and interacting medium.