Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
The translocation of nuclear-encoded precursor proteins into chloroplasts is a highly ordered process involving the action of several components to regulate this molecular ensemble. Not only GTP hydrolysis and GDP release but also the phosphorylation of TOC GTPases is a widely discussed mechanism to regulate protein import. The receptor component (Toc34) and its isoform of A. thaliana (atToc33) were found to be regulated by phosphorylation. Although the phosphorylation of Toc33 is already known for several years, several questions regarding the molecular components involved in the regulation of the phosphorylation process, precisely what is the protein kinase and where this kinase is initially localized, so far remained unclear.
This thesis aimed at the defining of the phosphorylation status of TOC GTPases in monomeric and/or dimeric states, the identification of the nature of Toc33-PK (protein kinase), and in the same context it aimed at gaining first insights into the physiological significance of Toc33 phosphorylation. To this end, (I) An in vitro and in vivo system for investigating of TOC GTPases Phosphorylation (in monomeric or dimeric state) was developed. Since no information is available about the phosphorylation status of the Toc159 isoforms, the second receptor of the TOC complex, it was interesting to investigate whether these isoforms undergo phosphorylation or not. The results indicated that atToc159 isoforms are able to be phosphorylated by the kinase activity in purified outer envelope membranes (OEMs) of pea, but not atToc132. Moreover, an artificial dimer of psToc34 based on the interaction of a C-terminally fused leucine zipper was not phosphorylated. This result reflected the inability of the OEM kinase to phosphorylate the dimers of TOC GTPases. Also, In vivo labeling of atToc33 was developed and occurred in a dose-dependent manner. Therefore, this results evidenced that in vitro phosphorylation of atToc33 (both endogenous wild type and recombinant expressed proteins) is not artificial labeling but represents a physiological relevance. CD (circular dichroism) measurements revealed that recombinant GTPase domain of atToc33 is preferentially phosphorylated in its folded state. Therefore, it could be suggested that folding of atToc33rec is a prerequisite for its phosphorylation and the phosphorylation event occurs as a posttranslational modification most likely after insertion of Toc33 (Toc34) into the OE of chloroplasts.
Secondly, (II) Isolation and identification of Toc33-PK from OEMs of chloroplasts was performed. Four independent strategies were developed to identify the Toc33-protein kinase: UV-induced and chemically-based crosslinking, different applied chromatographic techniques, identification of PK-Toc33 interaction by means of HDN-PAGE (histidine- and deoxycholate-based native PAGE), and finally mass spectrometric approaches were performed on fractions including the potential kinase activity. UV-induced crosslinking procedure was developed and resulted in covalent bonding of nine proteins to [a-32P] ATP, while chemically-based one was not significant. The applied chromatographic and HDN-PAGE approaches, including mass spectrometry, have revealed the identification of 13 protein kinases. Of these identified kinases, phototropin2 (Phot2, AT5G58140), leucine-rich repeat PK (LRR-PK, AT4G28650.1), and receptor-like transmembrane PK (RLK, AT5G56040.2) were selected as the most promising candidates (ca. kinase type and one transmembrane helix for membrane localization).
(III) The physiological significance of Toc33 phosphoryation was shown to link this process with the environmental changes (especially, the light conditions). Identification of chloroplast OE-located PKs performed by nLC-MALDI-MS/MS resulted in the detection of Phot2. Furthermore, the subcellular localization of Phot2 in OEM of chloroplasts was confirmed by immunoblotting experiments using a-Phot2 antibody. The kinase activity of Phot2 towards TOC GTPases was characterized and revealed that fused GST-KD (kinase domain) protein able to specifically phosphorylate atToc33rec, but not atToc159rec. Also, endogenous atPhot2 was upregulated and heavily detected in the ppi1-S181A plant line (where serine to alanine exchange was performed to abolish the phosphorylation of atToc33). Hence, we suggested that certain signal cascades may directly or indirectly link Toc33 receptor phosphorylation, protein levels of Phot2 (as promising PK candidate), and irradiation conditions (as an inducing signal of the subsequent phosphorylation events). Light-dependent phosphorylation of Toc33 was shown either after de-etiolation conditions or after high light intensities of blue light was performed. Therefore, phosphorylation of Toc33 might be identified as an external regulatory signal to regulate preproteins import into chloroplasts in response to environmental conditions (e.g. light changes) or as a signal of chloroplast biogenesis.
High-throughput protein localization studies require multiple strategies. Mass spectrometric analysis of defined cellular fractions is one of the complementary approaches to a diverse array of cell biological methods. In recent years, the protein content of different cellular (sub-)compartments was approached. Despite of all the efforts made, the analysis of membrane fractions remains difficult, in that the dissection of the proteomes of the envelope membranes of chloroplasts or mitochondria is often not reliable because sample purity is not always warranted. Moreover, proteomic studies are often restricted to single (model) species, and therefore limited in respect to differential individual evolution. In this study we analyzed the chloroplast envelope proteomes of different plant species, namely, the individual proteomes of inner and outer envelope (OE) membrane of Pisum sativum and the mixed envelope proteomes of Arabidopsis thaliana and Medicago sativa. The analysis of all three species yielded 341 identified proteins in total, 247 of them being unique. 39 proteins were genuine envelope proteins found in at least two species. Based on this and previous envelope studies we defined the core envelope proteome of chloroplasts. Comparing the general overlap of the available six independent studies (including ours) revealed only a number of 27 envelope proteins. Depending on the stringency of applied selection criteria we found 231 envelope proteins, while less stringent criteria increases this number to 649 putative envelope proteins. Based on the latter we provide a map of the outer and inner envelope core proteome, which includes many yet uncharacterized proteins predicted to be involved in transport, signaling, and response. Furthermore, a foundation for the functional characterization of yet unidentified functions of the inner and OE for further analyses is provided.
DNA damage in oocytes induces a switch of the quality control factor TAp63α from dimer to tetramer
(2011)
TAp63a, a homolog of the p53 tumor suppressor, is a quality control factor in the female germline. Remarkably, already undamaged oocytes express high levels of the protein, suggesting that TAp63a’s activity is under tight control of an inhibitory mechanism. Biochemical studies have proposed that inhibition requires the C-terminal transactivation inhibitory domain. However, the structural mechanism of TAp63a inhibition remains unknown. Here, we show that TAp63a is kept in an inactive dimeric state. We reveal that relief of inhibition leads to tetramer formation with ~20-fold higher DNA affinity. In vivo, phosphorylation-triggered tetramerization of TAp63a is not reversible by dephosphorylation. Furthermore, we show that a helix in the oligomerization domain of p63 is crucial for tetramer stabilization and competes with the transactivation domain for the same binding site. Our results demonstrate how TAp63a is inhibited by complex domain-domain interactions that provide the basis for regulating quality control in oocytes.