Refine
Document Type
- Article (15)
Language
- English (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Artificial intelligence (3)
- Algorithms (2)
- Bone density (2)
- CT (2)
- Magnetic resonance imaging (2)
- Osteoporosis (2)
- Radiomics (2)
- Tomography (x-ray computed) (2)
- Age determination by skeleton (1)
- Anemia (1)
Institute
- Medizin (15)
- Informatik und Mathematik (1)
BACKGROUND: Evaluation of latest generation automated attenuation-based tube potential selection (ATPS) impact on image quality and radiation dose in contrast-enhanced chest-abdomen-pelvis computed tomography examinations for gynaecologic cancer staging.
METHODS: This IRB approved single-centre, observer-blinded retrospective study with a waiver for informed consent included a total of 100 patients with contrast-enhanced chest-abdomen-pelvis CT for gynaecologic cancer staging. All patients were examined with activated ATPS for adaption of tube voltage to body habitus. 50 patients were scanned on a third-generation dual-source CT (DSCT), and another 50 patients on a second-generation DSCT. Predefined image quality setting remained stable between both groups at 120 kV and a current of 210 Reference mAs. Subjective image quality assessment was performed by two blinded readers independently. Attenuation and image noise were measured in several anatomic structures. Signal-to-noise ratio (SNR) was calculated. For the evaluation of radiation exposure, CT dose index (CTDIvol) values were compared.
RESULTS: Diagnostic image quality was obtained in all patients. The median CTDIvol (6.1 mGy, range 3.9-22 mGy) was 40 % lower when using the algorithm compared with the previous ATCM protocol (median 10.2 mGy · cm, range 5.8-22.8 mGy). A reduction in potential to 90 kV occurred in 19 cases, a reduction to 100 kV in 23 patients and a reduction to 110 kV in 3 patients of our experimental cohort. These patients received significantly lower radiation exposure compared to the former used protocol.
CONCLUSION: Latest generation automated ATPS on third-generation DSCT provides good diagnostic image quality in chest-abdomen-pelvis CT while average radiation dose is reduced by 40 % compared to former ATPS protocol on second-generation DSCT.
Background: Computed tomography (CT) low-dose (LD) imaging is used to lower radiation exposure, especially in vascular imaging; in current literature, this is mostly on latest generation high-end CT systems.
Purpose: To evaluate the effects of reduced tube current on objective and subjective image quality of a 15-year-old 16-slice CT system for pulmonary angiography (CTPA).
Material and Methods: CTPA scans from 60 prospectively randomized patients (28 men, 32 women) were examined in this study on a 15-year-old 16-slice CT scanner system. Standard CT (SD) settings were 100 kV and 150 mAs, LD settings were 100 kV and 50 mAs. Attenuation of the pulmonary trunk, various anatomic landmarks, and image noise were quantitatively measured; contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) were calculated. Three independent blinded radiologists subjectively rated each image series using a 5-point grading scale.
Results: CT dose index (CTDI) in the LD series was 66.46% lower compared to the SD settings (2.49 ± 0.55 mGy versus 7.42 ± 1.17 mGy). Attenuation of the pulmonary trunk showed similar results for both series (SD 409.55 ± 91.04 HU; LD 380.43 HU ± 93.11 HU; P = 0.768). Subjective image analysis showed no significant differences between SD and LD settings regarding the suitability for detection of central and peripheral PE (central SD/LD, 4.88; intra-class correlation coefficients [ICC], 0.894/4.83; ICC, 0.745; peripheral SD/LD, 4.70; ICC, 0.943/4.57; ICC, 0.919; all P > 0.4).
Conclusion: The LD protocol, on a 15-year-old CT scanner system without current high-end hardware or post-processing tools, led to a dose reduction of approximately 67% with similar subjective image quality and delineation of central and peripheral pulmonary arteries.
Background: Various studies have been made about the most effective and safest type of treatment for vertebral compression fractures (VCFs). Long-term results are needed for qualitative evaluation.
Purpose: The purpose of the study is to evaluate the effectiveness of percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) procedures for VCFs.
Materials and Methods: Forty-nine patients who received either PVP or PKP between 2002 and 2015 returned a specially developed questionnaire and were included in a cross-sectional outcome analysis. The questionnaire assessed pain development by use of a visual analog scale (VAS). Imaging data (CT scans) were retrospectively analyzed for identification of cement leakage.
Results: Patients’ VAS scores significantly decreased after treatment (7.0 ± 3.4 => 3.7 ± 3.4), (p < 0.001). The average pain reduction in patients treated with PVP was −3.3 ± 3.8 (p < 0.001) (median −3.5) and −4.0 ± 3.9 (p < 0.001) (median −4.5) in patients treated with PKP. Fifteen Patients (41.7%) receiving PVP and four patients (30.7%) receiving PKP experienced recurrence of pain. Cement leakage occurred in 10 patients (22.73%). Patients with cement leakage showed comparable VAS scores after treatment (6.8 ± 3.5 => 1.4 ± 1.6), (p = 0.008). Thirty-nine patients reported an increase in mobility (79.6%) and 41 patients an improvement in quality of life (83.7%).
Conclusion: Pain reduction by means of PVP or PKP in patients with VCFs was discernible over the period of observation. Percutaneous vertebroplasty and PKP contribute to the desired treatment results. However, the level of low pain may not remain constant.
Myocardial fibrosis and inflammation by CMR predict cardiovascular outcome in people living with HIV
(2021)
Objectives_: The goal of this study was to examine prognostic relationships between cardiac imaging measures and cardiovascular outcome in people living with human immunodeficiency virus (HIV) (PLWH) on highly active antiretroviral therapy (HAART).
Background: PLWH have a higher prevalence of cardiovascular disease and heart failure (HF) compared with the noninfected population. The pathophysiological drivers of myocardial dysfunction and worse cardiovascular outcome in HIV remain poorly understood.
Methods: This prospective observational longitudinal study included consecutive PLWH on long-term HAART undergoing cardiac magnetic resonance (CMR) examination for assessment of myocardial volumes and function, T1 and T2 mapping, perfusion, and scar. Time-to-event analysis was performed from the index CMR examination to the first single event per patient. The primary endpoint was an adjudicated adverse cardiovascular event (cardiovascular mortality, nonfatal acute coronary syndrome, an appropriate device discharge, or a documented HF hospitalization).
Results: A total of 156 participants (62% male; age [median, interquartile range]: 50 years [42 to 57 years]) were included. During a median follow-up of 13 months (9 to 19 months), 24 events were observed (4 HF deaths, 1 sudden cardiac death, 2 nonfatal acute myocardial infarction, 1 appropriate device discharge, and 16 HF hospitalizations). Patients with events had higher native T1 (median [interquartile range]: 1,149 ms [1,115 to 1,163 ms] vs. 1,110 ms [1,075 to 1,138 ms]); native T2 (40 ms [38 to 41 ms] vs. 37 ms [36 to 39 ms]); left ventricular (LV) mass index (65 g/m2 [49 to 77 g/m2] vs. 57 g/m2 [49 to 64 g/m2]), and N-terminal pro–B-type natriuretic peptide (109 pg/l [25 to 337 pg/l] vs. 48 pg/l [23 to 82 pg/l]) (all p < 0.05). In multivariable analyses, native T1 was independently predictive of adverse events (chi-square test, 15.9; p < 0.001; native T1 [10 ms] hazard ratio [95% confidence interval]: 1.20 [1.08 to 1.33]; p = 0.001), followed by a model that also included LV mass (chi-square test, 17.1; p < 0.001). Traditional cardiovascular risk scores were not predictive of the adverse events.
Conclusions: Our findings reveal important prognostic associations of diffuse myocardial fibrosis and LV remodeling in PLWH. These results may support development of personalized approaches to screening and early intervention to reduce the burden of HF in PLWH (International T1 Multicenter Outcome Study; NCT03749343).
Objectives: To analyze the performance of radiological assessment categories and quantitative computational analysis of apparent diffusion coefficient (ADC) maps using variant machine learning algorithms to differentiate clinically significant versus insignificant prostate cancer (PCa). Methods: Retrospectively, 73 patients were included in the study. The patients (mean age, 66.3 ± 7.6 years) were examined with multiparametric MRI (mpMRI) prior to radical prostatectomy (n = 33) or targeted biopsy (n = 40). The index lesion was annotated in MRI ADC and the equivalent histologic slides according to the highest Gleason Grade Group (GrG). Volumes of interest (VOIs) were determined for each lesion and normal-appearing peripheral zone. VOIs were processed by radiomic analysis. For the classification of lesions according to their clinical significance (GrG ≥ 3), principal component (PC) analysis, univariate analysis (UA) with consecutive support vector machines, neural networks, and random forest analysis were performed. Results: PC analysis discriminated between benign and malignant prostate tissue. PC evaluation yielded no stratification of PCa lesions according to their clinical significance, but UA revealed differences in clinical assessment categories and radiomic features. We trained three classification models with fifteen feature subsets. We identified a subset of shape features which improved the diagnostic accuracy of the clinical assessment categories (maximum increase in diagnostic accuracy ΔAUC = + 0.05, p < 0.001) while also identifying combinations of features and models which reduced overall accuracy. Conclusions: The impact of radiomic features to differentiate PCa lesions according to their clinical significance remains controversial. It depends on feature selection and the employed machine learning algorithms. It can result in improvement or reduction of diagnostic performance.
Dual-energy CT (DECT) has emerged into clinical routine as an imaging technique with unique postprocessing utilities that improve the evaluation of different body areas. The virtual non-calcium (VNCa) reconstruction algorithm has shown beneficial effects on the depiction of bone marrow pathologies such as bone marrow edema. Its main advantage is the ability to substantially increase the image contrast of structures that are usually covered with calcium mineral, such as calcified vessels or bone marrow, and to depict a large number of traumatic, inflammatory, infiltrative, and degenerative disorders affecting either the spine or the appendicular skeleton. Therefore, VNCa imaging represents another step forward for DECT to image conditions and disorders that usually require the use of more expensive and time-consuming techniques such as magnetic resonance imaging, positron emission tomography/CT, or bone scintigraphy. The aim of this review article is to explain the technical background of VNCa imaging, showcase its applicability in the different body regions, and provide an updated outlook on the clinical impact of this technique, which goes beyond the sole improvement in image quality.
Background: Dual-source dual-energy computed tomography (DECT) offers the potential for opportunistic osteoporosis screening by enabling phantomless bone mineral density (BMD) quantification. This study sought to assess the accuracy and precision of volumetric BMD measurement using dual-source DECT in comparison to quantitative CT (QCT). Methods: A validated spine phantom consisting of three lumbar vertebra equivalents with 50 (L1), 100 (L2), and 200 mg/cm3 (L3) calcium hydroxyapatite (HA) concentrations was scanned employing third-generation dual-source DECT and QCT. While BMD assessment based on QCT required an additional standardised bone density calibration phantom, the DECT technique operated by using a dedicated postprocessing software based on material decomposition without requiring calibration phantoms. Accuracy and precision of both modalities were compared by calculating measurement errors. In addition, correlation and agreement analyses were performed using Pearson correlation, linear regression, and Bland-Altman plots. Results: DECT-derived BMD values differed significantly from those obtained by QCT (p < 0.001) and were found to be closer to true HA concentrations. Relative measurement errors were significantly smaller for DECT in comparison to QCT (L1, 0.94% versus 9.68%; L2, 0.28% versus 5.74%; L3, 0.24% versus 3.67%, respectively). DECT demonstrated better BMD measurement repeatability compared to QCT (coefficient of variance < 4.29% for DECT, < 6.74% for QCT). Both methods correlated well to each other (r = 0.9993; 95% confidence interval 0.9984–0.9997; p < 0.001) and revealed substantial agreement in Bland-Altman plots. Conclusions: Phantomless dual-source DECT-based BMD assessment of lumbar vertebra equivalents using material decomposition showed higher diagnostic accuracy compared to QCT.
Purpose: To investigate the diagnostic performance of noise-optimized virtual monoenergetic images (VMI+) in dual-energy CT (DECT) of portal vein thrombosis (PVT) compared to standard reconstructions. Method: This retrospective, single-center study included 107 patients (68 men; mean age, 60.1 ± 10.7 years) with malignant or cirrhotic liver disease and suspected PVT who had undergone contrast-enhanced portal-phase DECT of the abdomen. Linearly blended (M_0.6) and virtual monoenergetic images were calculated using both standard VMI and noise-optimized VMI+ algorithms in 20 keV increments from 40 to 100 keV. Quantitative measurements were performed in the portal vein for objective contrast-to-noise ratio (CNR) calculation. The image series showing the greatest CNR were further assessed for subjective image quality and diagnostic accuracy of PVT detection by two blinded radiologists. Results: PVT was present in 38 subjects. VMI+ reconstructions at 40 keV revealed the best objective image quality (CNR, 9.6 ± 4.3) compared to all other image reconstructions (p < 0.01). In the standard VMI series, CNR peaked at 60 keV (CNR, 4.7 ± 2.1). Qualitative image parameters showed the highest image quality rating scores for the 60 keV VMI+ series (median, 4) (p ≤ 0.03). The greatest diagnostic accuracy for the diagnosis of PVT was found for the 40 keV VMI+ series (sensitivity, 96%; specificity, 96%) compared to M_0.6 images (sensitivity, 87%; specificity, 92%), 60 keV VMI (sensitivity, 87%; specificity, 97%), and 60 keV VMI+ reconstructions (sensitivity, 92%; specificity, 97%) (p ≤ 0.01). Conclusions: Low-keV VMI+ reconstructions resulted in significantly improved diagnostic performance for the detection of PVT compared to other DECT reconstruction algorithms.
Objectives: To compare radiation dose and image quality of single-energy (SECT) and dual-energy (DECT) head and neck CT examinations performed with second- and third-generation dual-source CT (DSCT) in matched patient cohorts. Methods: 200 patients (mean age 55.1 ± 16.9 years) who underwent venous phase head and neck CT with a vendor-preset protocol were retrospectively divided into four equal groups (n = 50) matched by gender and BMI: second (Group A, SECT, 100-kV; Group B, DECT, 80/Sn140-kV), and third-generation DSCT (Group C, SECT, 100-kV; Group D, DECT, 90/Sn150-kV). Assess- ment of radiation dose was performed for an average scan length of 27 cm. Contrast-to-noise ratio measure- ments and dose-independent figure-of-merit calcu- lations of the submandibular gland, thyroid, internal jugular vein, and common carotid artery were analyzed quantitatively. Qualitative image parameters were evalu- ated regarding overall image quality, artifacts and reader confidence using 5-point Likert scales. Results: Effective radiation dose (ED) was not signifi- cantly different between SECT and DECT acquisition for each scanner generation (p = 0.10). Significantly lower effective radiation dose (p < 0.01) values were observed for third-generation DSCT groups C (1.1 ± 0.2 mSv) and D (1.0 ± 0.3 mSv) compared to second-generation DSCT groups A (1.8 ± 0.1 mSv) and B (1.6 ± 0.2 mSv). Figure-of- merit/contrast-to-noise ratio analysis revealed superior results for third-generation DECT Group D compared to all other groups. Qualitative image parameters showed non-significant differences between all groups (p > 0.06). Conclusion: Contrast-enhanced head and neck DECT can be performed with second- and third-generation DSCT systems without radiation penalty or impaired image quality compared with SECT, while third-generation DSCT is the most dose efficient acquisition method. Advances in knowledge: Differences in radiation dose between SECT and DECT of the dose-vulnerable head and neck region using DSCT systems have not been evaluated so far. Therefore, this study directly compares radiation dose and image quality of standard SECT and DECT protocols of second- and third-generation DSCT platforms.
Objectives: To determine the diagnostic accuracy of dual-energy CT (DECT) virtual noncalcium (VNCa) reconstructions for assessing thoracic disk herniation compared to standard grayscale CT. Methods: In this retrospective study, 87 patients (1131 intervertebral disks; mean age, 66 years; 47 women) who underwent third-generation dual-source DECT and 3.0-T MRI within 3 weeks between November 2016 and April 2020 were included. Five blinded radiologists analyzed standard DECT and color-coded VNCa images after a time interval of 8 weeks for the presence and degree of thoracic disk herniation and spinal nerve root impingement. Consensus reading of independently evaluated MRI series served as the reference standard, assessed by two separate experienced readers. Additionally, image ratings were carried out by using 5-point Likert scales. Results: MRI revealed a total of 133 herniated thoracic disks. Color-coded VNCa images yielded higher overall sensitivity (624/665 [94%; 95% CI, 0.89–0.96] vs 485/665 [73%; 95% CI, 0.67–0.80]), specificity (4775/4990 [96%; 95% CI, 0.90–0.98] vs 4066/4990 [82%; 95% CI, 0.79–0.84]), and accuracy (5399/5655 [96%; 95% CI, 0.93–0.98] vs 4551/5655 [81%; 95% CI, 0.74–0.86]) for the assessment of thoracic disk herniation compared to standard CT (all p < .001). Interrater agreement was excellent for VNCa and fair for standard CT (ϰ = 0.82 vs 0.37; p < .001). In addition, VNCa imaging achieved higher scores regarding diagnostic confidence, image quality, and noise compared to standard CT (all p < .001). Conclusions: Color-coded VNCa imaging yielded substantially higher diagnostic accuracy and confidence for assessing thoracic disk herniation compared to standard CT.