Refine
Document Type
- diplomthesis (1)
- Doctoral Thesis (1)
Language
- German (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- 3-atomic-heteronuclear molecule (1)
- COLTRIMS (1)
- Coulombexplosion (1)
- Electron capture (1)
- Elektronenanlagerungsreaktion (1)
- Ion-Molecule collisions (1)
- Ion-Molekül-Stoß (1)
- Kleines Molekül (1)
- Kohlenstoffmolekül (1)
- Molekularbewegung (1)
Institute
- Physik (2)
Mit der vorliegenden Arbeit wurden zu ersten Mal die seit mehreren Jahren vorhergesagten dynamischen Aufbruchsmechanismen - der direkte, der sequentielle und der asynchrone Zerfall - in mehratomigen Molekülen kinematisch vollständig untersucht. Experimentell wurde hierfür ein Kohlenstoffdioxid-(CO2)-Molekül in langsamen Ion-Molekül Stößen dreifach ionisiert, indem die Elektronen des Targets von den langsamen, hochgeladenen Projektilionen (Ar8+-Ionen) eingefangen wurden. Die Untersuchung des Zerfalls des CO2-Ions in die einfach geladenen ionischen Fragmente C+ + O+ + O+ zeigte, dass bei diesem Zerfall das Projektilion vornehmlich einen positiven Ladungszustand von q = 6 und nicht den zunächst erwarteten Ladungszustand q = 5 aufweist. Dies ist darauf zurückzuführen, dass die eingefangenen Elektronen oftmals elektronisch hoch angeregte Zustände im Projektil populieren und demnach im weiteren Verlauf über Autoionisationsprozesse dieses auch wieder verlassen können. Ähnliche Autoionisationsprozesse können auch im Target ablaufen, treten dort jedoch mit einer geringeren Wahrscheinlichkeit auf, da der Wirkungsquerschnitt für Autoionisationsprozesse im Target um einen Faktor 1,3 kleiner ist als für Autoionisationen im Projektil. Zusätzlich zeigte die Untersuchung der Stoßdynamik, dass der dreifache Elektroneneinfang primär bei einer parallelen Orientierung der Molekülachse zur Projektilstrahlachse auftritt. Eine weitere Abhängigkeit der Stoßdynamik zum Beispiel vom Stoßparameter beziehungsweise vom Streuwinkel konnte nicht beobachtet werden. Durch die koinzidente Messung aller vier Reaktionsteilchen konnte der Kanal Ar8+ + CO2 --> Ar6+ + C+ + O+ + O+ eindeutig bestimmt werden und die Reaktionsdynamik des CO2-Ions nach dem Stoß analysiert werden. Dabei tritt deutlich der direkte Aufbruch hervor, bei welchem die drei einfach geladenen Ionen sich rein aufgrund ihrer Coulombkräfte voneinander abstoßen. Bei einer solchen Coulombexplosion bleibt dem Molekülion kaum Zeit, um eine molekulare Schwingung zu vollführen. Neben diesem schnellen Zerfall konnten aber auch jene Zerfälle beobachtet werden, bei denen das Molekülion zuerst molekular schwingt und dann zu einem späteren Zeitpunkt in die ionischen Fragmente zerfällt. Dieser letztere Zerfallsprozess gehört zu den sogenannten asynchronen Zerfallsmechanismen. Er stellt einen Zwischenprozess zwischen dem reinen 1-Stufen-Prozess wie dem direkten Aufbruch und dem reinen 2-Stufen-Prozess dar. Bei solchen sequentiellen 2-Stufen Prozessen fragmentiert das CO2-Molekül im ersten Schritt in ein O+- und ein CO2+-Ion. Im zweiten Schritt dissoziiert dann das CO2+-Fragment, nachdem es nahezu keine Wirkung der Coulombkräfte des ersten Sauerstoffions mehr spürt, in ein C+- und ein O+-Ion. Durch die Darstellung der Schwerpunktsimpulse der Fragmente in Dalitz- und Newton-Diagrammen ist es mit dieser Arbeit erstmals gelungen diesen sequentiellen Prozess experimentell eindeutig nachzuweisen. In der weiteren Analyse konnte gezeigt werden, dass über die im System deponierte Energie, welche über die kinetische Energie der Fragmente bestimmt wird, die verschiedenen Reaktionsmechanismen direkt kontrolliert werden können. Speziell bei Energien unterhalb von 20 eV wurde gezeigt, dass es keine Potentialflächen gibt, die über einen direkten bzw. simultanen Aufbruch zu dem Endzustand C+ + O+ + O+ führen. Bei mehratomigen Molekülen erweist sich das Treffen detaillierter Aussagen über mögliche Dissoziationskanäle ohne die genaue Kenntnis der Lage der Potentialflächen und den Übergängen zwischen diesen als äußerst schwierig. Selbst bei genauer Kenntnis der Lage und Form der Potentialflächen, ist es aufgrund der hohen Dichten innerhalb der Übergangsbereiche der Potentialflächen nahezu unmöglich, den Verlauf der Dissoziationskanäle zu verfolgen. Mit dieser Arbeit ist es gelungen, die verschiedenen Reaktionskanäle ohne die Existenz von Energiepotentialflächen eindeutig zu identifizieren. Außerdem konnte gezeigt werden, dass die Energie, die während des Stoßes im Molekül deponiert wird, eine Schlüsselgröße darstellt, mit welcher die Fragmentationskanäle direkt kontrolliert werden können.
Das Ziel des Experiments war es, den Einfluss des Valenzelektrons im Kaliumatom auf die Kernabschirmung zu untersuchen. Es wurde mit Hilfe von Laserpulsen mit einer Dauer von 120 fs entfernt. Die Ionisation oder Anregung der K-Schale der Kaliumatome sowie der Kaliumionen wurde mit hochenergetischen Röntgenphotonen realisiert. Um die daraus entstandenen Auger-Elektronen ohne störenden Untergrund messen zu können, wurde ein 4π Flugzeitspektrometer nach dem Prinzip der magnetischen Flasche eingesetzt. Es wurde gezeigt, dass nach dem Entfernen des Valenzelektrons die Kernabschirmung des Kaliumatoms zunimmt, was eine Änderung der Energie der K-Schale zu Folge hat. Diese Änderung von 3 eV trat bei einem Vergleich der Ionisationskurven für Kaliumatome und Kaliumionen deutlich hervor. Die Höhe der Änderung lässt darauf schließen, dass sie im Zusammenhang mit der Ionisierungsenergie des entfernten 4s-Elektrons steht. Durch die Verwendung des Femtosekunden-Laserpulses in Verbindung mit den Röntgenstrahlen des Synchrotrons sollte der Auger-Prozess zeitaufgelöst dargestellt werden. Eine Messung des Verhältnisses der Elektronenraten in Abhängigkeit von der zeitlichen Verzögerung zwischen Laser- und Röntgenstrahlen ergab eine Länge des Röntgenpulses von 66 ps (± 5 ps), was für zeitaufgelöste Untersuchungen des in Femtosekunden ablaufenden Auger-Prozesses zu lang ist. Jedoch zeigt das Experiment, dass bei einer hinreichenden Verkürzung der Röntgenpulse zeitaufgelöste Untersuchungen im Bereich von Femtosekunden möglich sind. Für die Zukunft ist an der ALS eine weitere Beamline geplant, welche Röntgenpulse im fs-Bereich produzieren kann. Durch Verwenden dieser kurzen Röntgenpulse wären weitere Experimente zur zeitaufgelösten Darstellung des Auger-Prozesses denkbar. Bis zu diesem Zeitpunkt sollen weitere Experimente zur Untersuchung „langsamer“ dynamischer Vorgängen in Atomen und Molekülen, zum Beispiel die Dissoziation von Molekülen auf einer Pikosekunden Zeitskala, durchgeführt werden.