Non-ribosomal peptide synthetases (NRPSs) are the origin of a wide range of natural products, including many clinically used drugs. Engineering of these often giant biosynthetic machineries to produce novel non-ribosomal peptides (NRPs) at high titre is an ongoing challenge. Here we describe a strategy to functionally combine NRPS fragments of Gram-negative and -positive origin, synthesising novel peptides at titres up to 290 mg l-1. Extending from the recently introduced definition of eXchange Units (XUs), we inserted synthetic zippers (SZs) to split single protein NRPSs into up to three independently expressed and translated polypeptide chains. These synthetic type of NRPS (type S) enables easier access to engineering, overcomes cloning limitations, and provides a simple and rapid approach to building peptide libraries via the combination of different NRPS subunits.
Bacterial biosynthetic assembly lines, such as non-ribosomal peptide synthetases (NRPS) and polyketide synthases, are often subject of synthetic biology – because they produce a variety of natural products invaluable for modern pharmacotherapy. Acquiring the ability to engineer these biosynthetic assembly lines allows the production of artificial non-ribosomal peptides (NRP), polyketides, and hybrids thereof with new or improved properties. However, traditional bioengineering approaches have suffered for decades from their very limited applicability and, unlike combinatorial chemistry, are stigmatized as inefficient because they cannot be linked to the high-throughput screening platforms of the pharmaceutical industry. Although combinatorial chemistry can generate new molecules cheaper, faster, and in greater numbers than traditional natural product discovery and bioengineering approaches, it does not meet current medical needs because it covers only a limited biologically relevant chemical space. Hence, methods for high-throughput generation of new natural product-like compound libraries could provide a new avenue towards the identification of new lead compounds. To this end, prior to this work, we introduced an artificial synthetic NRPS type, referred to as type S NRPS, to provide a first-of-its-kind bicombinatorial approach to parallelized high-throughput NRP library generation. However, a bottleneck of these first two generations of type S NRPS was a significant drop in production yields. To address this issue, we applied an iterative optimization process that enabled titer increases of up to 55-fold compared to the non-optimized equivalents, restoring them to wild-type levels and beyond.
Non-ribosomal peptide synthetases (NRPSs) are the origin of a wide range of natural products, including many clinically used drugs. Efficient engineering of these often giant biosynthetic machineries to produce novel non-ribosomal peptides (NRPs) is an ongoing challenge. Here we describe a cloning and co-expression strategy to functionally combine NRPS fragments of Gram-negative and -positive origin, synthesising novel peptides at titres up to 220 mg L−1. Extending from the recently introduced definition of eXchange Units (XUs), we inserted synthetic zippers (SZs) to split single protein NRPSs into independently expressed and translated polypeptide chains. These synthetic type of NRPS (type S) enables easier access to engineering, overcomes cloning limitations, and provides a simple and rapid approach to building peptide libraries via the combination of different NRPS subunits.