Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- DNA (1)
- Elektronenspinresonanz (1)
- Nitroxylradikal (1)
- Oligonucleotide (1)
- PELDOR (1)
- RNA (1)
- site-directed spinlabeling (1)
Institute
Im Rahmen dieser Doktorarbeit wurde eine wirksame synthetische und spektroskopische Methode entwickelt, um Abstände in DNA- und RNA-Duplexen mittels Elektronen-Paramagnetische-Resonanz (EPR) zu messen und um in Zukunft die dreidimensionale Struktur biologisch relevanter RNAs bestimmen zu können. Die Synthese von iodierten Nukleotid-Bausteinen für die Oligonukleotidsynthese, an denen mit Hilfe der Palladium katalysierten Sonogashira-Kreuzkupplung sich EPR-aktive Nitroxid-Acetylene einführen lassen, wurde erfolgreich durchgeführt. Diese Phosphoramidite sollten die folgenden Kriterien erfüllen: Alle vier Basen (A, C, G und U) sollten modifiziert werden und das eingeführte Spinlabel 2,2,5,5- Tetramethyl-3-ethinyl-pyrrolin-N-oxyl (TPA) sollte entweder in die minor oder die major groove hineinragen. Im Falle der Pyrimidine (U und C) war nur die Orientierung in die major groove möglich, da das Iodid nur am C5 eingeführt werden kann. Obwohl 5-Iodo-desoxyuridin- und 5-Iodo-uridin-phosphoramidit käuflich sind, wurden diese Bausteine selber hergestellt, wobei die iodierten Bausteine mit hohen Ausbeuten erhalten wurden. Die Synthese von 5-Iodo-cytidin erfolgte aus Cytidin, insbesondere durch die Iodierung mit Iod, Iodsäure in Essigsäure und Tetrachlorkohlenstoff. Die einzige Möglichkeit, dass das Nitroxid eine Orientierung innerhalb der minor groove annimmt, war die Derivatisierung am C2 der Purine. Der Austausch von Iodo gegen eine Aminofunktion für Guanosin war wegen des Verschwindens einer potentiellen Wasserstoffbrücke ungünstig, im Gegensatz zu Adenosin. Die Synthese von 2-Iodo-adenosin-phosphoramidit wurde durchgeführt, wobei die Amino-Gruppe am C2 eines modifizierten Guanosins durch Iod mittels einer radikalischen Reaktion mit Iod, Iodmethan und Kupferiodid substituiert wurde. Die Synthese von 7-Deaza-adenosin (7-Iodo-tubercidin) und von 7-Deaza-guanosin wurde durch eine Lewissäure katalysierte Vorbrüggen-Glykosylierung zwischen der geschützen Nukleobase und der acetylierten Ribofuranose erzielt. Die Iodierung erfolgte für das geschützte Tubercidin mit N-Iodsuccinimid, während sie für Guanosin trotz zahlreicher Versuche leider scheiterte. Da natürlich vorkommende DNA und RNA nicht paramagnetisch sind, müssen sie durch die Einführung eines Spinlabels EPR-fähig gemacht werden. Dafür wurde das Spinlabel TPA ausgewählt, da es sich mit einer hohen Stabilität und Starrheit auszeichnet. Dafür wurde zuerst die Palladium(II) katalysierte Sonogashira-Kupplung in DNA-Strängen wärend der Oligonukleotidsynthese für 5-Iodo-desoxy-uridin optimiert: Sehr reine Proben mit einem oder zwei Spinlabels in einem Strang konnten hergestellt werden. Diese Methode wurde anschließend erfolgreich auf RNA mit geringfügigen Änderungen für U, C und A übertragen, um die Ausbeute der Kupplung zu verbessern. Die benutzte Chemie hat sich als entscheidend erwiesen, da es zu berücksichtigen gilt, wie sich die Reagenzien, die bei der RNA-Festphasensynthese eingesetzt werden, auf das Spinlabel auswirken. Es wurde festgestellt, dass die Oxidationsstufe des klassischen TBDMS-Festphasenzyklus mit Iod, Pyridin und Wasser für die Reduktion eines beträchtlichen Teils des Nitroxids verantwortlich ist, insbesondere im Falle von 2-Iodo-adenosin. Deshalb wurde beschlossen, die patentierte ACE-Chemie zu verwenden, in der das Phosphor-Atom während des Festphasenzyklus mit tert-Butylperoxid in Toluol oxidiert wird. Die Synthese der geeigneten Bausteine wurde hierfür durchgeführt, 5-Iodo-uridin-phosphoramidit ist bei Dharmacon kommerziell erhältlich. Leider scheiterte die Synthese von 7-Iodo-tubercidin-phosphoramidit auf der Stufe der Einführung des Orthoesters. Auf diese Weise wurden sehr reine doppelgelabelte DNA und RNA Duplexe erhalten, deren Stabilität durch UV-Spektroskopie überprüft wurde. Der Unterschied in den Tm-Werten überstieg nicht 3,2°C für DNA und 5,1°C für RNA im Vergleich zu den unmodifizierten Duplexen. CD-Spektren wurden ebenso aufgenommen und zeigten, dass die B- bzw. A-Form erhalten blieb. In Zusammenarbeit mit dem Arbeitskreis Prisner wurden die Abstände zwischen den zwei Nitroxiden in den synthetisierten fünf DNA- und sechs RNA-Duplexen mit Puls-Elektron-Doppel-Resonanz (PELDOR) gemessen. Diese experimentellen Werte wurden mit den theoretischen Werten verglichen, die mit Molecular Dynamics Simulationen erhalten wurden (Arbeitskreis Stock). Die mit beiden Methoden erhaltenen Ergebnisse stimmen überein. Erfolgreich wurde auch die Synthese von reinen spingelabelten biologisch relevanten RNAs wie TAR-RNA, der vier-Wege Kreuzung IIIa,b,c des Hepatitis C Virus und dem U4-U6 Komplex des Spleißosoms im Rahmen dieser Arbeit durchgeführt. Die größte synthetisierte RNA betrug 65 Nukleobasen. Leider konnten wegen zu hoher Flexibilität oder nicht richtiger Faltung der RNA keine definierten Abstände gefunden werden.
To facilitate the measurement of intramolecular distances in solvated RNA systems, a combination of spin-labeling, electron paramagnetic resonance (EPR), and molecular dynamics (MD) simulation is presented. The fairly rigid spin label 2,2,5,5-tetramethyl-pyrrolin-1-yloxyl-3-acetylene (TPA) was base and site specifically introduced into RNA through a Sonogashira palladium catalyzed crosscoupling on column. For this purpose 5-iodouridine, 5-iodo-cytidine and 2-iodo-adenosine phosphoramidites were synthesized and incorporated into RNA-sequences. Application of the recently developed ACE (R) chemistry presented the main advantage to limit the reduction of the nitroxide to an amine during the oligonucleotide automated synthesis and thus to increase substantially the reliability of the synthesis and the yield of labeled oligonucleotides. 4-Pulse Electron Double Resonance (PELDOR) was then successfully used to measure the intramolecular spin–spin distances in six doubly labeled RNA-duplexes. Comparison of these results with our previous work on DNA showed that A- and B-Form can be differentiated. Using an all-atom force field with explicit solvent, MD simulations gave results in good agreement with the measured distances and indicated that the RNA A-Form was conserved despite a local destabilization effect of the nitroxide label. The applicability of the method to more complex biological systems is discussed.