Refine
Document Type
- Part of Periodical (5)
- Article (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Conidae (2)
- Afonsoconus (1)
- COI (1)
- COI Barcode gene (1)
- COI mitochondrial gene (1)
- Conus hughmorrisoni sp. nov., new species (1)
- Coral Sea (1)
- DNA barcoding (1)
- Indo-Pacific (1)
- Integrative taxonomy (1)
Based on newly collected material from the Kavieng Lagoon Biodiversity Survey, we describe a new species of cone snail, Conus hughmorrisoni sp. nov., from the vicinity of Kavieng, New Ireland, Papua New Guinea. It closely resembles the New Caledonian C. exiguus and the Philippine C. hanshassi, but differs from these species by having more numerous shoulder tubercles, by the shell’s sculpturing and details of the color pattern. We also sequenced a fragment of the mitochondrial COI gene of five specimens collected alive. All possessed very similar sequences (genetic distances < 0.3%), different from all the COI sequences of cone snails available in GenBank (genetic distances > 10%).
While many programs are available to edit phylogenetic trees, associating pictures with branch tips in an efficient and automatic way is not an available option. Here, we present TreePics, a standalone software that uses a web browser to visualize phylogenetic trees in Newick format and that associates pictures (typically, pictures of the voucher specimens) to the tip of each branch. Pictures are visualized as thumbnails and can be enlarged by a mouse rollover. Further, several pictures are can be selected and displayed in a separate window for visual comparison. TreePics works either online or in a full standalone version, where it can display trees with several thousands of pictures (depending on the memory available). We argue that TreePics can be particularly useful in a preliminary stage of research, such as to quickly detect conflicts between a DNA-based phylogenetic tree and morphological variation, that may be due to contamination that needs to be removed prior to final analyses, or the presence of species complexes.
Morphological (shell) and molecular examination of a large suite of specimens of pleurotomariids from around New Caledonia and the Coral Sea reveals the existence of four species in the complex of Perotrochus caledonicus: Perotrochus deforgesi Métivier, 1990 and P. pseudogranulosus sp. nov. live allopatrically on the plateaus and guyots of the Coral Sea; Perotrochus caledonicus Bouchet & Métivier, 1982 and Perotrochus wareni sp. nov. live sympatrically - but essentially not syntopically - on the slopes of New Caledonia, Norfolk Ridge and the Loyalty Ridge. All species live in the 300–500 m interval, and together form a significant component of the mollusc fauna living on hard bottoms in the SW Pacific, with individual dredge hauls containing up to 25 specimens of Perotrochus.
The small conoidean Hemilienardia ocellata is one of the easily recognizable Indo-Pacific “turrids”, primarily because of its remarkable eyespot colour pattern. Morphological and molecular phylogenetic analyses revealed four species that share this “characteristic” colour pattern but demonstrate consistent differences in size and shell proportions. Three new species – Hemilienardia acinonyx sp. nov. from the Philippines, H. lynx sp. nov. from Papua New Guinea and H. pardus sp. nov. from the Society and Loyalty Islands – are described based on the results of phylogenetic analyses. Although the H. ocellata species complex clade falls in a monophyletic Hemilienardia, H. ocellata and H. acinonyx sp. nov. possess a radula with semi-enrolled or notably flattened triangular marginal teeth, a condition that diverges substantially from the standard radular morphology of Hemilienardia and other raphitomids.
Although cone snails are among the most studied group of gastropods, new species are still regularly described. Here, we focus on Afonsoconus Tucker & Tenorio, 2013, a lineage that includes only two species from the Indo-Pacific Ocean. The analysis of molecular (partial mitochondrial cox1 gene sequences) and morphological (shell and radular tooth) characters revealed that the samples collected by dredging in deep water during a recent expedition carried out in the Mozambique Channel are different from the samples collected in the Pacific Ocean. We thus introduce here a new species, Afonsoconus crosnieri sp. nov., from the SW Indian Ocean including records from the Mozambique Channel, the Comoros and Glorieuses Islands, Madagascar, South Africa and Reunion Island.
The genus Sibogasyrinx has to date included only four species of rare deep-water Conoidea, each known from few specimens. In shell characters it strongly resembles three distantly-related genera, two of which, Comitas and Leucosyrinx, belong to a different family, the Pseudomelatomidae. A molecular phylogenetic analysis of a large amount of material of Conoidea has revealed the existence of much additional undescribed diversity within Sibogasyrinx from the central Indo-Pacific and temperate Northern Pacific. Based on partial sequences of the mitochondrial cox1 gene and morphological characters of 54 specimens, 10 species hypotheses are proposed, of which six are described as new species: S. subula sp. nov., S. lolae sp. nov., S. maximei sp. nov., S. clausura sp. nov., S. pagodiformis sp. nov. and S. elbakyanae Kantor, Puillandre & Bouchet sp. nov. One of the previously described species was absent in our material. Most of the new species are very similar and are compared to Leucosyrinx spp. Species of Sibogasyrinx are unique among Conoidea on account of the high intrageneric variability in radular morphology. Three distinct radula types are found within Sibogasyrinx, two of which are confined to highly supported subclades.