Refine
Year of publication
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- Biochemistry (3)
- Biophysics and structural biology (2)
- LILBID-MS (2)
- Mass spectrometry (2)
- Membrane proteins (2)
- BAM complex (1)
- Bioenergetics (1)
- Cell-free synthetic biology (1)
- Chemistry (1)
- Cryo-electron microscopy (1)
Protein folding in cells is regulated by networks of chaperones, including the heat shock protein 70 (Hsp70) system, which consists of the Hsp40 cochaperone and a nucleotide exchange factor. Hsp40 mediates complex formation between Hsp70 and client proteins prior to interaction with Hsp90. We used mass spectrometry (MS) to monitor assemblies formed between eukaryotic Hsp90/Hsp70/Hsp40, Hop, p23, and a client protein, a fragment of the glucocorticoid receptor (GR). We found that Hsp40 promotes interactions between the client and Hsp70, and facilitates dimerization of monomeric Hsp70. This dimerization is antiparallel, stabilized by post-translational modifications (PTMs), and maintained in the stable heterohexameric client-loading complex Hsp902Hsp702HopGR identified here. Addition of p23 to this client-loading complex induces transfer of GR onto Hsp90 and leads to expulsion of Hop and Hsp70. Based on these results, we propose that Hsp70 antiparallel dimerization, stabilized by PTMs, positions the client for transfer from Hsp70 to Hsp90.
Membrane proteins frequently assemble into higher order homo- or hetero-oligomers within their natural lipid environment. This complex formation can modulate their folding, activity as well as substrate selectivity. Non-disruptive methods avoiding critical steps, such as membrane disintegration, transfer into artificial environments or chemical modifications are therefore essential to analyze molecular mechanisms of native membrane protein assemblies. The combination of cell-free synthetic biology, nanodisc-technology and non-covalent mass spectrometry provides excellent synergies for the analysis of membrane protein oligomerization within defined membranes. We exemplify our strategy by oligomeric state characterization of various membrane proteins including ion channels, transporters and membrane-integrated enzymes assembling up to hexameric complexes. We further indicate a lipid-dependent dimer formation of MraY translocase correlating with the enzymatic activity. The detergent-free synthesis of membrane protein/nanodisc samples and the analysis by LILBID mass spectrometry provide a versatile platform for the analysis of membrane proteins in a native environment.
LILBID and nESI : different native mass spectrometry techniques as tools in structural biology
(2018)
Native mass spectrometry is applied for the investigation of proteins and protein complexes worldwide. The challenge in native mass spectrometry is maintaining the features of the proteins of interest, such as oligomeric state, bound ligands, or the conformation of the protein complex, during transfer from solution to gas phase. This is an essential prerequisite to allow conclusions about the solution state protein complex, based on the gas phase measurements. Therefore, soft ionization techniques are required. Widely used for the analysis of protein complexes are nanoelectro spray ionization (nESI) mass spectrometers. A newer ionization method is laser induced liquid bead ion desorption (LILBID), which is based on the release of protein complexes from solution phase via infrared (IR) laser desorption. We use both methods in our lab, depending on the requirements of the biological system we are interested in. Here we benchmark the performance of our LILBID mass spectrometer in comparison to a nESI instrument, regarding sample conditions, buffer and additive tolerances, dissociation mechanism and applicability towards soluble and membrane protein complexes.
The bacteriophage ΦX174 causes large pore formation in Escherichia coli and related bacteria. Lysis is mediated by the small membrane-bound toxin ΦX174-E, which is composed of a transmembrane domain and a soluble domain. The toxin requires activation by the bacterial chaperone SlyD and inhibits the cell wall precursor forming enzyme MraY. Bacterial cell wall biosynthesis is an important target for antibiotics; therefore, knowledge of molecular details in the ΦX174-E lysis pathway could help to identify new mechanisms and sites of action. In this study, cell-free expression and nanoparticle technology were combined to avoid toxic effects upon ΦX174-E synthesis, resulting in the efficient production of a functional full-length toxin and engineered derivatives. Pre-assembled nanodiscs were used to study ΦX174-E function in defined lipid environments and to analyze its membrane insertion mechanisms. The conformation of the soluble domain of ΦX174-E was identified as a central trigger for membrane insertion, as well as for the oligomeric assembly of the toxin. Stable complex formation of the soluble domain with SlyD is essential to keep nascent ΦX174-E in a conformation competent for membrane insertion. Once inserted into the membrane, ΦX174-E assembles into high-order complexes via its transmembrane domain and oligomerization depends on the presence of an essential proline residue at position 21. The data presented here support a model where an initial contact of the nascent ΦX174-E transmembrane domain with the peptidyl-prolyl isomerase domain of SlyD is essential to allow a subsequent stable interaction of SlyD with the ΦX174-E soluble domain for the generation of a membrane insertion competent toxin.
Structural Biology has moved beyond the aim of simply identifying the components of a cellular subsystem towards analysing the dynamics and interactions of multiple players within a cell. This focal shift comes with additional requirements for the analytical tools used to investigate these systems of increased size and complexity, such as Native Mass Spectrometry, which has always been an important tool for structural biology. Scientific advance and recent developments, such as new ways to mimic a cell membrane for a membrane protein, have caused established methods to struggle to keep up with the increased demands. In this review, we summarize the possibilities, which Laser Induced Liquid Bead Ion Desorption (LILBID) mass spectrometry offers with regard to the challenges of modern structural biology, like increasingly complex sample composition, novel membrane mimics and advanced structural analysis, including next neighbor relations and the dynamics of complex formation.
The formation of amyloid-β oligomers plays a key role in the onset of Alzheimer’s disease. We investigated the aggregation of amyloid-β oligomers by mass spectrometry and ion mobility spectrometry, revealing those structural properties, which lead to the formation of mature fibrils. We can show that the arrangement of the first oligomers is crucial for the topology of the resulting species, leading to the formation of non-toxic aggregates or fibrils.
F-type ATP synthases are multiprotein complexes composed of two separate coupled motors (F1 and FO) generating adenosine triphosphate (ATP) as the universal major energy source in a variety of relevant biological processes in mitochondria, bacteria and chloroplasts. While the structure of many ATPases is solved today, the precise assembly pathway of F1FO-ATP synthases is still largely unclear. Here, we probe the assembly of the F1 complex from Acetobacterium woodii. Using laser induced liquid bead ion desorption (LILBID) mass spectrometry, we study the self-assembly of purified F1 subunits in different environments under non-denaturing conditions. We report assembly requirements and identify important assembly intermediates in vitro and in cellula. Our data provide evidence that nucleotide binding is crucial for in vitro F1 assembly, whereas ATP hydrolysis appears to be less critical. We correlate our results with activity measurements and propose a model for the assembly pathway of a functional F1 complex.
Ion channel gating is essential for cellular homeostasis and is tightly controlled. In some eukaryotic and most bacterial ligand-gated K+ channels, RCK domains regulate ion fluxes. Until now, a single regulatory mechanism has been proposed for all RCK-regulated channels, involving signal transduction from the RCK domain to the gating area. Here, we present an inactive ADP-bound structure of KtrAB from Vibrio alginolyticus, determined by cryo-electron microscopy, which, combined with EPR spectroscopy and molecular dynamics simulations, uncovers a novel regulatory mechanism for ligand-induced action at a distance. Exchange of activating ATP to inactivating ADP triggers short helical segments in the K+-translocating KtrB dimer to organize into two long helices that penetrate deeply into the regulatory RCK domains, thus connecting nucleotide-binding sites and ion gates. As KtrAB and its homolog TrkAH have been implicated as bacterial pathogenicity factors, the discovery of this functionally relevant inactive conformation may advance structure-guided drug development.
Mitochondrial complex I, the largest and most complicated proton pump of the respiratory chain, links the electron transfer from NADH to ubiquinone to the pumping of four protons from the matrix into the intermembrane space. In humans, defects in complex I are involved in a wide range of degenerative disorders. Recent progress in the X-ray structural analysis of prokaryotic and eukaryotic complex I confirmed that the redox reactions are confined entirely to the hydrophilic peripheral arm of the L-shaped molecule and take place at a remarkable distance from the membrane domain. While this clearly implies that the proton pumping within the membrane arm of complex I is driven indirectly via long-range conformational coupling, the molecular mechanism and the number, identity, and localization of the pump-sites remains unclear. Here, we report that upon deletion of the gene for a small accessory subunit of the Yarrowia complex I, a stable subcomplex (nb8m delta) is formed that lacks the distal part of the membrane domain as revealed by single particle analysis. The analysis of the subunit composition of holo and subcomplex by three complementary proteomic approaches revealed that two (ND4 and ND5) of the three subunits with homology to bacterial Mrp-type Na+/H+ antiporters that have been discussed as prime candidates for harbouring the proton pumps were missing in nb8m delta. Nevertheless, nb8m delta still pumps protons at half the stoichiometry of the complete enzyme. Our results provide evidence that the membrane arm of complex I harbours two functionally distinct pump modules that are connected in series by the long helical transmission element recently identified by X-ray structural analysis.
One current goal in native mass spectrometry is the assignment of binding affinities to noncovalent complexes. Here we introduce a novel implementation of the existing laser-induced liquid bead ion desorption (LILBID) mass spectrometry method: this new method, LILBID laser dissociation curves, assesses binding strengths quantitatively. In all LILBID applications, aqueous sample droplets are irradiated by 3 µm laser pulses. Variation of the laser energy transferred to the droplet during desorption affects the degree of complex dissociation. In LILBID laser dissociation curves, laser energy transfer is purposely varied, and a binding affinity is calculated from the resulting complex dissociation. A series of dsDNAs with different binding affinities was assessed using LILBID laser dissociation curves. The binding affinity results from the LILBID laser dissociation curves strongly correlated with the melting temperatures from UV melting curves and with dissociation constants from isothermal titration calorimetry, standard solution phase methods. LILBID laser dissociation curve data also showed good reproducibility and successfully predicted the melting temperatures and dissociation constants of three DNA sequences. LILBID laser dissociation curves are a promising native mass spectrometry binding affinity method, with reduced time and sample consumption compared to melting curves or titrations.