• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Uhl, Nina (1)

Year of publication

  • 2017 (1)

Document Type

  • Doctoral Thesis (1)

Language

  • English (1)

Has Fulltext

  • yes (1)

Is part of the Bibliography

  • no (1)

Institute

  • Biochemie und Chemie (1)

1 search hit

  • 1 to 1
  • 10
  • 20
  • 50
  • 100
Studies on substrate uptake of the efflux pump AcrB from "Escherichia coli", a multidrug-resistance factor in clinically relevant multiresistant bacterial strains (2017)
Uhl, Nina
Infections with multidrug resistant bacterial strains like Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa or Acinetobacter baumanii that can accumulate resistance mechanisms against different groups of drugs cause increasing problems for the health care system. Multidrug efflux pumps are able to transport different classes of substances, providing a basic resistance to different antibiotics. Especially when they are overexpressed they can keep bacterial cells alive under antibiotic pressure unless other high level resistance mechanisms like expression of β-lactamases are established. One example for a clinically relevant multidrug efflux pump is the AcrAB/TolC tripartite system of E. coli, that transports a variety of different substrates, including besides antibiotics dyes, detergents, bile salts and organic compounds from the periplasm or the inner membrane out of the cell. AcrB is the inner membrane component of the protein complex that determines not only the substrate specificity of the tripartite system but energises the transport through the whole system process via proton transduction as well. TolC is the outer membrane spanning protein that forms a pore in the outer membrane enabling the system to transport drugs over the latter out of the cell. The periplasmic membrane fusion protein AcrA connects AcrB and TolC in the periplasm completing the channel from the periplasm, respective the inner membrane to the extracellular space. AcrB assembles as trimers, in asymmetric crystal structures each of the protomers adapts a different conformation designated L(oose), T(ight) and O(pen). In the protomers tunnels open up and collaps in different conformations. In the L protomer a periplasmic cleft opens up that can initially bind substrates to the periplasmic part of AcrB. In the T conformation the deep binding pocket opens that is assumed to bind substrates tightly that were bound to the access pocket before. As well in the T conformation a second pathway leading to the deep binding pocket opens that can guide substrates from a groove between transmembrane helices TM7, TM8 and TM9, the TM8 groove, that is connected with socalled tunnel 1 that ends in the deep binding pocket. In the O conformation a new tunnel opens that connects the collapsing deep binding pocket with the periplasmic space, respective the channel through the periplasmic space formed from AcrA and TolC. Substrates were cocrystallised in access and deep binding pocket verifying their role in substrate transport. In the TM8 groove in high resolution crystal structures DDM molecules were cocrystallised in L and T conformation, indicating that the AcrB substrate DDM may utilise this entrance to the deep binding pocket. The asymmetry observed in the AcrB trimers trongly suggests a peristaltic pump mechanism. The functional rotation cycle demands communication between the subunits and tight control of substrate load of protomers during the transport to optimise the ration between protons that are transduced and substrates transported. Indeed it was shown that AcrB transport mechanism is positively cooperative for some β-lactam substrates. For the communication between the subunits it was assumed that ionic interaction between ion pairs established between charged amino acids at the interfaces of protomers in different conformations are of special importance. Thus the amino acids engaged in ionic interactions, respective ion pairs D73-K131, E130-K110, D174-K110, R168, R259-E734 were substituted with non-charged amino acids pairwise and phenotypes were determined in plate dilution assays and MIC experiments. No evidence for a general, substrate independent, reduction of AcrB activity, that would be expected when the ionic residues are of special importance for AcrB function, could be found with the methods applied. Substitutions were not only combined pairwise according to the putative ion pairs but as well in combinations of R168A with D174N, E130Q and K131M. AcrB activity is reduced for the variant R168A_D174N significantly, activity decreases further for quadruple variant E130Q_K131M_ R168A_D174N. Because the reduced activity is only observed in this combination of substitutions the phenotype must result from accumulation of small effects of the single substitutions. R168A may destabilise the protomer interfaces, as its side chain is oriented in direction to the neighbouring protomer at all interfaces, enhancing substratespecific effects of substitutions E130Q, K131M, D174N that are not in all conformations oriented towards the neighbouring protomer but as well along the substrate transport pathway. Further investigations to figure out the details of the effects observed were not conducted because fluctuating expression of the variants hindered experimental procedures. In another approach TM8 was in focus of the interest. As mentioned above it is a possible substrate entrance in the inner membrane. The linker between TM8 and the periplasmic PC2 subdomain undergoes a coil-to-helix transition when AcrB cycles through L, T and O conformations. Linking the transmembrane part of AcrB that provides the energy for the transport process via proton transduction with the periplasmic part harbouring the major part of the substrate pathway assignes TM8 and the periplasmic linker (859-876) an important role in the function of AcrB. Thus it was investigated with an alanine-scan of residues 859 to 884 and G/P respective P/G exchange followed by phenotype characterisation in growth curve and plate dilution assays of selected variants. In the phenotype determinations none of the variants, except G861P that seems to cause massive sterical restriction in an α-helical region, displayed a general, substrate independent decrease of AcrB activity. Thus it is concluded that the individual properties of amino acids in TM8 and the periplasmic linker are not of general importance for the mechanism of AcrB. The substitution of individual amino acids had impact on uptake of different substrates in plate dilution assays in a substrate dependent manner. The uptake of some substrates, like erythromycin or chloramphenicol is more affected than that of others with rhodamine 6G resistance being only reduced for the G861P variant. A relation between the PSA of substrates and reduced activity of AcrB was observed. in Substrates with higher PSA values are more affected by substitutions in TM8 or periplasmic linker, resulting in the conclusion that substrates with higher PSA are more likely to be taken up via the TM8 groove/tunnel 1 pathway than those with lower PSA values.
  • 1 to 1

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks