Refine
Document Type
- Article (11)
- Working Paper (2)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- Regenerative Energie / Wasserstoff / Halbmetall / Dezentrale Energieversorgung (2)
- crystal structure (2)
- radiation-induced nanostructures (2)
- Arduengo-type carbene (1)
- C-H...Br hydrogen bond (1)
- alkali and alkaline earth metal salts (1)
- chemical vapor deposition (1)
- chemical vapour deposition (1)
- chlorosilane (1)
- field-effect transistor (1)
Institute
- Biochemie und Chemie (13)
- Physik (1)
- Präsidium (1)
Structural characterization of a polymethylsilsesquioxane (PMSQ) and a DT-type methyl silicone resin (MeDT) has been carried out by various instrumental analyses including GPC, NMR, gas chromatography, and gas chromatography-mass spectrometry. Although the PMSQ had a Mw around 5000, the resin contained a significant amount of low molecular weight species consisting of T2 [MeSi(OH)O2/2] and T3 [MeSiO3/2] units, ranging from T34T23 to T38T22 including many isomers. One isomer of T36T22 was isolated of which structure was determined as a cage structure. The species are supposed to consist mainly of cyclotetra- and cyclopentasiloxanes, but presence of strained rings such as cyclotrisiloxane rings also was suggested. In MeDT, species in which the T2 units in the molecules from PMSQ is replaced with D2 [Me2SiO2/2] were found, for example, T36D22, suggesting that general silicone resins consist of similar structures as silsesquioxanes. The Mark-Houwink exponent for these methyl resins was ~0.3, indicating the molecular shape to be compact. Investigation on the formation chemistry of the cubic octamers indicates that siloxane bond rearrangement is an important mechanism in the molecule build-up process.
Die Sonne strahlt weltweit pro Tag genügend Licht ein, um den Weltenergiebedarf für ein ganzes Jahr abzudecken. Somit ist sie die Quelle aller erneuerbarer Energien, denn neben der Erzeugung von Elektrizität aus Licht (Photovoltaik) regelt sie die Gezeiten und damit auch Wind und Wellen, die bei der Windkraft und in Gezeitenkraftwerken genutzt werden. Außerdem liefert sie die Energie für die Photosynthese in nachwachsenden Rohstoffen. Es gibt diesbezüglich nur ein grundlegendes Problem: Erneuerbare Energien fi nden wir in ausreichender Menge vor allem an Stellen mit mangelnder Infrastruktur. Sonnenenergie gibt es am meisten in der Wüste, Wind auf dem Meer und Biomasse im Dschungel. An Orten hoher Industrialisierung und damit auch hoher Bevölkerungsdichte ist für die »Erneuerbaren « so gut wie kein Platz. Es gibt demnach kein Energieproblem, aber ein Problem der Energiespeicherung und des Energietransportes.
Weltweit nehmen Kohle-, Öl- und Erdgasvorräte ab, der Energiebedarf dagegen steigt dramatisch an. Regenerative Energien mindern zwar die steigenden Klimagefahren, können aber unseren zukünftigen Energiebedarf in Ballungszentren kaum decken. Nach Einschätzung zahlreicher Experten gehört dem Wasserstoff die Zukunft. Er wird aber derzeit nahezu ausschließlich aus fossilen Brennstoffen gewonnen; damit bleibt auch diese Ressource endlich - ganz zu schweigen von ihrem hohen Gefährdungspotenzial. - Das neuartige Energiekonzept einer solaren und damit kohlenstoffunabhängigen Wasserstoffwirtschaft bedarf zur technischen Realisierung eines Zwischenspeichers für regenerative Energien. Dieser zukünftige Energieträger sollte synthetisch einfach erzeugbar sein, in unbegrenztem Maß zur Verfügung stehen oder zumindest recycelbar sein, die Energie permanent speichern und gefahrlos transportierbar sein, eine hohe Energiedichte aufweisen und kein Kohlendioxid oder andere (Klima-) Schadstoffe freisetzen. - Das Element Silicium kann zu einem maßgeschneiderten Bindeglied zur Ankoppelung dezentraler regenerativer Energieerzeugung an eine ebenso dezentrale Wasserstoffwirtschaft an jedem beliebigen Ort werden. Der Transport und die Speicherung von Silicium sind - im Gegensatz zu Öl oder besonders zu Wasserstoff - ohne Gefährdungspotenzial und/oder hohe Energieverluste möglich und erfordern nur eine technische Infrastruktur, wie sie auch für Kohle benötigt wird.
Global reserves of coal, oil and natural gas are diminishing; global energy requirements however are dramatically increasing. Renewable energy sources lower the threat to the earth’s climate but are not able to meet the energy consumption in major urban areas. The opinion of many experts is that the future will be dominated by hydrogen. However, this gas is essentially totally manufactured from fossil fuels and is hence of limited abundance – not to mention the hazards involved in its utilisation. - A novel energy concept involving solar and thus carbon-independent hydrogen-based technology necessitates an intermediate storage vehicle for renewable energy. This future energy carrier should be simple to manufacture, be available to an unlimited degree or at least be suitable for recycling, be able to store and transport the energy without hazards, demonstrate a high energy density and release no carbon dioxide or other climatically detrimental substances. - Silicon successfully functions as a tailor-made intermediate linking decentrally operating renewable energy-generation technology with equally decentrally organised hydrogen-based infrastructure at any location of choice. In contrast to oil and in particular hydrogen, the transport and storage of silicon are free from potential hazards and require a simple infrastructure similar to that needed for coal.
Directed deposition of silicon nanowires using neopentasilane as precursor and gold as catalyst
(2012)
In this work the applicability of neopentasilane (Si(SiH3)4) as a precursor for the formation of silicon nanowires by using gold nanoparticles as a catalyst has been explored. The growth proceeds via the formation of liquid gold/silicon alloy droplets, which excrete the silicon nanowires upon continued decomposition of the precursor. This mechanism determines the diameter of the Si nanowires. Different sources for the gold nanoparticles have been tested: the spontaneous dewetting of gold films, thermally annealed gold films, deposition of preformed gold nanoparticles, and the use of “liquid bright gold”, a material historically used for the gilding of porcelain and glass. The latter does not only form gold nanoparticles when deposited as a thin film and thermally annealed, but can also be patterned by using UV irradiation, providing access to laterally structured layers of silicon nanowires.
Perchlorinated polysilanes were synthesized by polymerization of tetrachlorosilane under cold plasma conditions with hydrogen as a reducing agent. Subsequent selective cleavage of the resulting polymer yielded oligochlorosilanes SinCl2n+2 (n = 2, 3) from which the octachlorotrisilane (n = 3, Cl8Si3, OCTS) was used as a novel precursor for the synthesis of single-crystalline Si nanowires (NW) by the well-established vapor–liquid–solid (VLS) mechanism. By adding doping agents, specifically BBr3 and PCl3, we achieved highly p- and n-type doped Si-NWs by means of atmospheric-pressure chemical vapor deposition (APCVD). These as grown NWs were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as electrical measurements of the NWs integrated in four-terminal and back-gated MOSFET modules. The intrinsic NWs appeared to be highly crystalline, with a preferred growth direction of [111] and a specific resistivity of ρ = 6 kΩ·cm. The doped NWs appeared to be [112] oriented with a specific resistivity of ρ = 198 mΩ·cm for p-type Si-NWs and ρ = 2.7 mΩ·cm for n-doped Si-NWs, revealing excellent dopant activation.
The crystal packing of the title compound, C13H19NO·0.33C7H8, shows a channel at [001], which contains grossly disordered toluene solvent molecules. The angle between the benzene ring and the mean plane of the formamide group is 71.1 (1)°. The amide groups of neighbouring molecules are connected by N—H(...)O hydrogen bonds, forming 21 helical chains propagating along [001]. Molecules are also connected by weak intermolecular C—H(...)O hydrogen bonds, forming 61 helices.
In the title compound, C27H37N2 +·Cl−·2CH2Cl2, the cation and the anion are each located on a crystallographic mirror plane. Both of the dichloromethane solvent molecules show a disorder across a mirror plane over two equally occupied positions. Additionally, one isopropyl group is also disordered. In the crystal, the cations are connected to the chloride ions via C—H[cdots, three dots, centered]Cl hydrogen bonds.
In the title compound, C27H37N2 +·Br−·2CH2Cl2, both the cation and the anion are located on a crystallographic mirror plane. Both of the dichloromethane solvent molecules show a disorder across a mirror plane over two equally occupied positions. In the crystal, the cations are connnected to the bromide ions via C—H[cdots, three dots, centered]Br hydrogen bonds.