• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Auner, Norbert (11)
  • Berger, Matthias (3)
  • Bolte, Michael (2)
  • Bats, Jan W. (1)
  • Bauch, Christian (1)
  • Bertagnolli, Emmerich (1)
  • Cook, Simon D. (1)
  • Felder, Thorsten (1)
  • Holthausen, Max C. (1)
  • Huth, Michael (1)
+ more

Year of publication

  • 2012 (6)
  • 2004 (2)
  • 2007 (1)
  • 2010 (1)
  • 2019 (1)

Document Type

  • Article (9)
  • Working Paper (2)

Language

  • English (8)
  • German (3)

Has Fulltext

  • yes (11)

Is part of the Bibliography

  • no (11)

Keywords

  • Regenerative Energie / Wasserstoff / Halbmetall / Dezentrale Energieversorgung (2)
  • radiation-induced nanostructures (2)
  • alkali and alkaline earth metal salts (1)
  • chemical vapor deposition (1)
  • chemical vapour deposition (1)
  • field-effect transistor (1)
  • gold (1)
  • isilane cleavage (1)
  • lithium chloride (1)
  • lithium hydride (1)
+ more

Institute

  • Biochemie und Chemie (11)
  • Physik (1)
  • Präsidium (1)

11 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Energiediskussion Frankfurter Art : Forscher am Institut für Anorganische und Analytische Chemie entwickeln hocheffizientes Verfahren zur Herstellung von Photovoltaik-Silicium und von Wasserstoffträger-Materialien (2007)
Auner, Norbert
Von Sand und Sonne zu Elektrizität und Wasserstoff : Polysilane: Bausteine einer zukünftigen Silicium-Technologie (2010)
Auner, Norbert
Die Sonne strahlt weltweit pro Tag genügend Licht ein, um den Weltenergiebedarf für ein ganzes Jahr abzudecken. Somit ist sie die Quelle aller erneuerbarer Energien, denn neben der Erzeugung von Elektrizität aus Licht (Photovoltaik) regelt sie die Gezeiten und damit auch Wind und Wellen, die bei der Windkraft und in Gezeitenkraftwerken genutzt werden. Außerdem liefert sie die Energie für die Photosynthese in nachwachsenden Rohstoffen. Es gibt diesbezüglich nur ein grundlegendes Problem: Erneuerbare Energien fi nden wir in ausreichender Menge vor allem an Stellen mit mangelnder Infrastruktur. Sonnenenergie gibt es am meisten in der Wüste, Wind auf dem Meer und Biomasse im Dschungel. An Orten hoher Industrialisierung und damit auch hoher Bevölkerungsdichte ist für die »Erneuerbaren « so gut wie kein Platz. Es gibt demnach kein Energieproblem, aber ein Problem der Energiespeicherung und des Energietransportes.
Silicon as an intermediary between renewable energy and hydrogen (2004)
Auner, Norbert
Global reserves of coal, oil and natural gas are diminishing; global energy requirements however are dramatically increasing. Renewable energy sources lower the threat to the earth’s climate but are not able to meet the energy consumption in major urban areas. The opinion of many experts is that the future will be dominated by hydrogen. However, this gas is essentially totally manufactured from fossil fuels and is hence of limited abundance – not to mention the hazards involved in its utilisation. - A novel energy concept involving solar and thus carbon-independent hydrogen-based technology necessitates an intermediate storage vehicle for renewable energy. This future energy carrier should be simple to manufacture, be available to an unlimited degree or at least be suitable for recycling, be able to store and transport the energy without hazards, demonstrate a high energy density and release no carbon dioxide or other climatically detrimental substances. - Silicon successfully functions as a tailor-made intermediate linking decentrally operating renewable energy-generation technology with equally decentrally organised hydrogen-based infrastructure at any location of choice. In contrast to oil and in particular hydrogen, the transport and storage of silicon are free from potential hazards and require a simple infrastructure similar to that needed for coal.
Silicium als Bindeglied zwischen erneuerbaren Energien und Wasserstoff (2004)
Auner, Norbert
Weltweit nehmen Kohle-, Öl- und Erdgasvorräte ab, der Energiebedarf dagegen steigt dramatisch an. Regenerative Energien mindern zwar die steigenden Klimagefahren, können aber unseren zukünftigen Energiebedarf in Ballungszentren kaum decken. Nach Einschätzung zahlreicher Experten gehört dem Wasserstoff die Zukunft. Er wird aber derzeit nahezu ausschließlich aus fossilen Brennstoffen gewonnen; damit bleibt auch diese Ressource endlich - ganz zu schweigen von ihrem hohen Gefährdungspotenzial. - Das neuartige Energiekonzept einer solaren und damit kohlenstoffunabhängigen Wasserstoffwirtschaft bedarf zur technischen Realisierung eines Zwischenspeichers für regenerative Energien. Dieser zukünftige Energieträger sollte synthetisch einfach erzeugbar sein, in unbegrenztem Maß zur Verfügung stehen oder zumindest recycelbar sein, die Energie permanent speichern und gefahrlos transportierbar sein, eine hohe Energiedichte aufweisen und kein Kohlendioxid oder andere (Klima-) Schadstoffe freisetzen. - Das Element Silicium kann zu einem maßgeschneiderten Bindeglied zur Ankoppelung dezentraler regenerativer Energieerzeugung an eine ebenso dezentrale Wasserstoffwirtschaft an jedem beliebigen Ort werden. Der Transport und die Speicherung von Silicium sind - im Gegensatz zu Öl oder besonders zu Wasserstoff - ohne Gefährdungspotenzial und/oder hohe Energieverluste möglich und erfordern nur eine technische Infrastruktur, wie sie auch für Kohle benötigt wird.
1,3-Bis(2,6-diisopropyl-phen-yl)-1H-imidazol-3-ium chloride dichloromethane disolvate (2012)
Berger, Matthias ; Auner, Norbert ; Bolte, Michael
In the title compound, C27H37N2 +·Cl−·2CH2Cl2, the cation and the anion are each located on a crystallographic mirror plane. Both of the dichloro­methane solvent mol­ecules show a disorder across a mirror plane over two equally occupied positions. Additionally, one isopropyl group is also disordered. In the crystal, the cations are connected to the chloride ions via C—H[cdots, three dots, centered]Cl hydrogen bonds.
1,3-Bis(2,6-diisopropyl-phen-yl)-1H-imidazol-3-ium bromide dichloromethane disolvate (2012)
Berger, Matthias ; Auner, Norbert ; Sinke, Tanja ; Bolte, Michael
In the title compound, C27H37N2 +·Br−·2CH2Cl2, both the cation and the anion are located on a crystallographic mirror plane. Both of the dichloro­methane solvent mol­ecules show a disorder across a mirror plane over two equally occupied positions. In the crystal, the cations are connnected to the bromide ions via C—H[cdots, three dots, centered]Br hydrogen bonds.
N-(2,6-Diisopropyl­phen­yl)formamide toluene 0.33-solvate (2012)
Berger, Matthias ; Bats, Jan W. ; Auner, Norbert
The crystal packing of the title compound, C13H19NO·0.33C7H8, shows a channel at [001], which contains grossly disordered toluene solvent mol­ecules. The angle between the benzene ring and the mean plane of the formamide group is 71.1 (1)°. The amide groups of neighbouring mol­ecules are connected by N—H(...)O hydrogen bonds, forming 21 helical chains propagating along [001]. Mol­ecules are also connected by weak inter­molecular C—H(...)O hydrogen bonds, forming 61 helices.
Directed deposition of silicon nanowires using neopentasilane as precursor and gold as catalyst (2012)
Kämpken, Britta ; Wulf, Verena ; Auner, Norbert ; Winhold, Marcel ; Huth, Michael ; Rhinow, Daniel ; Terfort, Andreas
In this work the applicability of neopentasilane (Si(SiH3)4) as a precursor for the formation of silicon nanowires by using gold nanoparticles as a catalyst has been explored. The growth proceeds via the formation of liquid gold/silicon alloy droplets, which excrete the silicon nanowires upon continued decomposition of the precursor. This mechanism determines the diameter of the Si nanowires. Different sources for the gold nanoparticles have been tested: the spontaneous dewetting of gold films, thermally annealed gold films, deposition of preformed gold nanoparticles, and the use of “liquid bright gold”, a material historically used for the gilding of porcelain and glass. The latter does not only form gold nanoparticles when deposited as a thin film and thermally annealed, but can also be patterned by using UV irradiation, providing access to laterally structured layers of silicon nanowires.
Characterization and some insights into the reaction chemistry of Polymethylsilsesquioxane or methyl silicone resins (2012)
Itoh, Maki ; Oka, Fukuyo ; Suto, Michitaka ; Cook, Simon D. ; Auner, Norbert
Structural characterization of a polymethylsilsesquioxane (PMSQ) and a DT-type methyl silicone resin (MeDT) has been carried out by various instrumental analyses including GPC, NMR, gas chromatography, and gas chromatography-mass spectrometry. Although the PMSQ had a Mw around 5000, the resin contained a significant amount of low molecular weight species consisting of T2 [MeSi(OH)O2/2] and T3 [MeSiO3/2] units, ranging from T34T23 to T38T22 including many isomers. One isomer of T36T22 was isolated of which structure was determined as a cage structure. The species are supposed to consist mainly of cyclotetra- and cyclopentasiloxanes, but presence of strained rings such as cyclotrisiloxane rings also was suggested. In MeDT, species in which the T2 units in the molecules from PMSQ is replaced with D2 [Me2SiO2/2] were found, for example, T36D22, suggesting that general silicone resins consist of similar structures as silsesquioxanes. The Mark-Houwink exponent for these methyl resins was ~0.3, indicating the molecular shape to be compact. Investigation on the formation chemistry of the cubic octamers indicates that siloxane bond rearrangement is an important mechanism in the molecule build-up process.
Disilane cleavage with selected alkali and alkaline earth metal salts (2019)
Santowski, Tobias ; Sturm, Alexander Gregor ; Lewis, Kenrick M. ; Felder, Thorsten ; Holthausen, Max C. ; Auner, Norbert
The industry‐scale production of methylchloromonosilanes in the Müller–Rochow Direct Process is accompanied by the formation of a residue, the direct process residue (DPR), comprised of disilanes MenSi2Cl6‐n (n=1–6). Great research efforts have been devoted to the recycling of these disilanes into monosilanes to allow reintroduction into the siloxane production chain. In this work, disilane cleavage by using alkali and alkaline earth metal salts is reported. The reaction with metal hydrides, in particular lithium hydride (LiH), leads to efficient reduction of chlorine containing disilanes but also induces disproportionation into mono‐ and oligosilanes. Alkali and alkaline earth chlorides, formed in the course of the reduction, specifically induce disproportionation of highly chlorinated disilanes, whereas highly methylated disilanes (n>3) remain unreacted. Nearly quantitative DPR conversion into monosilanes was achieved by using concentrated HCl/ether solutions in the presence of lithium chloride.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks