Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Platelets are anucleate cells that play a major role in hemostasis and thrombosis in the vasculature. During primary hemostasis platelets adhere to sites of vascular damage and the initial platelet coat is reinforced by additional platelets forming a stable aggregate. At the same time platelets secrete their intracellular granules containing substances that further activate platelets in an autocrine and paracrine fashion and affect local coagulation and endothelial smooth muscle cell function. The small guanine nucleotide binding protein Rap1 regulates the activity of the platelet integrin alphaIIbbeta3 and thus platelet aggregation. Rap1 activity is controlled by guanine nucleotide exchange factors and GTPase activating proteins. In platelets, Rap1GAP2 is the only GTPase activating protein of Rap1. In order to identify Rap1GAP2-associated proteins, a genetic two-hybrid screening in yeast was performed and synaptotagmin-like protein 1 (Slp1, also called JFC1) was found as a new putative binding partner of Rap1GAP2. Slp1 is a tandem C2 domain containing protein and is known to bind to Rab27, a small GTPase involved in platelet dense granule secretion. The direct interaction between Rap1GAP2 and Slp1 was confirmed in yeast and in transfected cells. More importantly, Slp1 is expressed in platelets and binding of endogenous Rap1GAP2 and Slp1 was verified in these cells. The Rap1GAP2 and Slp1 interaction sites were mapped by mutational analysis. Rap1GAP2 binds through the -TKXT- motif within its C-terminus to the C2A domain of Slp1. Moreover, the Slp1 binding -TKXT- motif of Rap1GAP2 was confirmed by complementary approaches using short synthetic Rap1GAP2 peptides. The C2A domain of Slp1 is a phospholipid binding domain and thus mediates binding of Slp1 to the plasma membrane. Phospholipid overlay assays revealed that simultaneous binding of Slp1 via its C2A domain to Rap1GAP2 and to phospholipids can occur. In addition, the interaction between Rap1GAP2 and Slp1 is regulated by cAMP-dependent protein kinase (cAK or PKA), and kinase activation in platelets enhanced binding of endogenous Rap1GAP2 to Slp1. In-vitro phosphorylation assays revealed that Slp1 is a substrate of PKA, and serine 111 was identified as phosphorylation site. Since Slp1 is a Rab27 binding protein, a trimeric complex of Slp1, Rab27 and Rap1GAP2 is conceivable. The association of Slp1, Rab27 and Rap1GAP2 was investigated by immunofluorescence and co-immuno-precipitation experiments in both, transfected cells and platelets. By Slp1 affinity chromatography and subsequent mass spectrometric analysis additional Slp1 binding proteins were identified in platelets, and binding of Slp1 to Rab8 was confirmed in pull-down assays. To investigate the functional significance of the interaction between Rap1GAP2 and Slp1, an assay system was established to determine serotonin secretion of streptolysin-O permeabilized platelets. Addition of recombinant Slp1 protein to permeabilized platelets strongly inhibited platelet dense granule secretion, whereas addition of recombinant Rap1GAP2 protein or synthetic Rap1GAP2 peptide enhanced secretion. Deleting the Slp1 binding -TKXT- motif abolished the stimulatory effect of Rap1GAP2 on secretion. Addition of Rap1 to permeabilized platelets had no effect on secretion. These findings indicate that the Rap1GAP2 effect on platelet secretion does not depend on the GTPase activating function of Rap1GAP2, but is rather dependent on the -TKXT- mediated interaction of Rap1GAP2 with Slp1. In addition, in-vitro GAP assays revealed that Slp1 binding to Rap1GAP2 does not affect the Rap1GAP activity of Rap1GAP2, and adhesion assays excluded a role for the Rap1GAP2/Slp1 interaction in cell adhesion. Altogether, the results of the present study demonstrate that besides its function in platelet aggregation by controlling the activity of the small guanine nucleotide binding protein Rap1, Rap1GAP2 is involved in platelet dense granule secretion by the new -TKXT- mediated interaction with the Rab27 and membrane binding protein Slp1. In addition, the interaction between Rap1GAP2 and Slp1 is embedded into an elaborate network of protein-protein interactions in platelets which appear to be regulated by phosphorylation. Future studies will in particular aim to dissect the molecular details of Rap1GAP2 and Slp1 action in platelet secretion and investigate the potential biochemical and pharmacological value of the unique protein binding -TKXT- motif of Rap1GAP2.
cGMP- and cAMP-dependent protein kinases (cGK and cAK) mediate the inhibitory effects of endothelium-derived messenger molecules nitric oxide and prostacyclin on platelets. To understand the mechanisms involved in platelet inhibition we searched for new substrates of cGK and cAK. We identified Rap1GAP2, the only GTPase-activating protein of Rap1 in platelets. Rap1 is a guanine-nucleotide binding protein that controls integrin activity, platelet adhesion and aggregation. Rap1GAP2 is required to turn over Rap1-GTP to Rap1-GDP resulting in the inactivation of integrins and reduced cellular adhesion. Using phospho-specific antibodies we demonstrate phosphorylation of endogenous Rap1GAP2 on serine 7 by cGK and cAK in intact platelets. Yeast-two-hybrid screening revealed an interaction of the phosphoserine/-threonine binding adapter protein 14-3-3 with Rap1GAP2, and we mapped the 14-3-3 binding site to the N-terminus of Rap1GAP2 close to the cGK/cAK phosphorylation site. We could show that 14-3-3 binding to Rap1GAP2 requires phosphorylation of serine 9. Platelet activation by ADP and thrombin treatment induces Rap1GAP2 serine 9 phosphorylation and enhances the attachment of 14-3-3 to Rap1GAP2. In contrast, phosphorylation of serine 7 by cGK/cAK leads to the detachment of 14-3-3. Furthermore, Rap1GAP2 serine 7 phosphorylation correlates with the inhibition of Rap1-GTP formation by cGMP and cAMP in platelets. Cell adhesion experiments provide additional evidence that Rap1GAP2 is activated by the detachment of 14-3-3. Point mutants of Rap1GAP2 deficient in 14-3-3 binding inhibit Rap1-mediated cell adhesion significantly stronger than a Rap1GAP2 mutant that binds 14-3-3 constitutively. Our findings define a novel regulatory mechanism that might contribute to both platelet activation and endothelial inhibition of platelet adhesion and aggregation.
GTPase-activating proteins are required to terminate signaling by Rap1, a small guanine nucleotide-binding protein that controls integrin activity and cell adhesion. Recently, we identified Rap1GAP2, a GTPase-activating protein of Rap1 in platelets. Here we show that 14-3-3 proteins interact with phosphorylated serine 9 at the N terminus of Rap1GAP2. Platelet activation by ADP and thrombin enhances serine 9 phosphorylation and increases 14-3-3 binding to endogenous Rap1GAP2. Conversely, inhibition of platelets by endothelium-derived factors nitric oxide and prostacyclin disrupts 14-3-3 binding. These effects are mediated by cGMP- and cAMP-dependent protein kinases that phosphorylate Rap1GAP2 at serine 7, adjacent to the 14-3-3 binding site. 14-3-3 binding does not change the GTPase-activating function of Rap1GAP2 in vitro. However, 14-3-3 binding attenuates Rap1GAP2 mediated inhibition of cell adhesion. Our findings define a novel crossover point of activatory and inhibitory signaling pathways in platelets.