Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- cGMP (2)
- Cardiac fibroblast (1)
- Gene expression (1)
- Kinase (1)
- Nitric oxide (1)
- Platelet physiology (1)
- Proliferation (1)
- Protein kinase (1)
- Rap1 (1)
- SAGE (1)
Institute
- Medizin (3)
- Biochemie und Chemie (2)
The NO/cGMP pathway inhibits Rap1 activation in human platelets via cGMP-dependent protein kinase I
(2005)
The NO/cGMP signalling pathway strongly inhibits agonist-induced platelet aggregation. However, the molecular mechanisms involved are not completely defined.We have studied NO/cGMP effects on the activity of Rap1, an abundant guanine-nucleotidebinding protein in platelets. Rap1-GTP levels were reduced by NO-donors and activators of NO-sensitive soluble guanylyl cyclase. Four lines of evidence suggest that NO/cGMP effects are mediated by cGMP-dependent protein kinase (cGKI): (i) Rap1 inhibition correlated with cGKI activity as measured by the phosphorylation state ofVASP, an established substrate of cGKI, (ii) 8-pCPT-cGMP, a membrane permeable cGMP-analog and activator of cGKI, completely blocked Rap1 activation, (iii) Rp- 8pCPT-cGMPS, a cGKI inhibitor, reversed NO effects and (iv) expression of cGKI in cGKI-deficient megakaryocytes inhibited Rap1 activation. NO/cGMP/cGKI effects were independent of the type of stimulus used for Rap1 activation.Thrombin-,ADPand collagen-induced formation of Rap1-GTP in platelets as well as turbulence-induced Rap1 activation in megakaryocytes were inhibited. Furthermore, cGKI inhibited ADP-induced Rap1 activation induced by the G a i -coupled P2Y12 receptor alone, i.e. independently of effects on Ca2+-signalling. From these studies we conclude that NO/cGMP inhibit Rap1 activation in human platelets and that this effect is mediated by cGKI. Since Rap1 controls the function of integrin a IIbß 3 , we propose that Rap1 inhibition might play a central role in the anti-aggregatory actions of NO/cGMP.
Quantitative analysis of the cardiac fibroblast transcriptome implications for NO/cGMP signaling
(2004)
Cardiac fibroblasts regulate tissue repair and remodeling in the heart. To quantify transcript levels in these cells we performed a comprehensive gene expression study using serial analysis of gene expression (SAGE). Among 110,169 sequenced tags we could identify 30,507 unique transcripts. A comparison of SAGE data from cardiac fibroblasts with data derived from total mouse heart revealed a number of fibroblast-specific genes. Cardiac fibroblasts expressed a specific collection of collagens, matrix proteins and metalloproteinases, growth factors, and components of signaling pathways. The NO/cGMP signaling pathway was represented by the mRNAs for α1 and β1 subunits of guanylyl cyclase, cGMP-dependent protein kinase type I (cGK I), and, interestingly, the G-kinase-anchoring protein GKAP42. The expression of cGK I was verified by RT-PCR and Western blot. To establish a functional role for cGK I in cardiac fibroblasts we studied its effect on cell proliferation. Selective activation of cGK I with a cGMP analog inhibited the proliferation of serum-stimulated cardiac fibroblasts, which express cGK I, but not higher passage fibroblasts, which contain no detectable cGK I. Currently, our data suggest that cGK I mediates the inhibitory effects of the NO/cGMP pathway on cardiac fibroblast growth. Furthermore the SAGE library of transcripts expressed in cardiac fibroblasts provides a basis for future investigations into the pathological regulatory mechanisms underlying cardiac fibrosis.
cGMP- and cAMP-dependent protein kinases (cGK and cAK) mediate the inhibitory effects of endothelium-derived messenger molecules nitric oxide and prostacyclin on platelets. To understand the mechanisms involved in platelet inhibition we searched for new substrates of cGK and cAK. We identified Rap1GAP2, the only GTPase-activating protein of Rap1 in platelets. Rap1 is a guanine-nucleotide binding protein that controls integrin activity, platelet adhesion and aggregation. Rap1GAP2 is required to turn over Rap1-GTP to Rap1-GDP resulting in the inactivation of integrins and reduced cellular adhesion. Using phospho-specific antibodies we demonstrate phosphorylation of endogenous Rap1GAP2 on serine 7 by cGK and cAK in intact platelets. Yeast-two-hybrid screening revealed an interaction of the phosphoserine/-threonine binding adapter protein 14-3-3 with Rap1GAP2, and we mapped the 14-3-3 binding site to the N-terminus of Rap1GAP2 close to the cGK/cAK phosphorylation site. We could show that 14-3-3 binding to Rap1GAP2 requires phosphorylation of serine 9. Platelet activation by ADP and thrombin treatment induces Rap1GAP2 serine 9 phosphorylation and enhances the attachment of 14-3-3 to Rap1GAP2. In contrast, phosphorylation of serine 7 by cGK/cAK leads to the detachment of 14-3-3. Furthermore, Rap1GAP2 serine 7 phosphorylation correlates with the inhibition of Rap1-GTP formation by cGMP and cAMP in platelets. Cell adhesion experiments provide additional evidence that Rap1GAP2 is activated by the detachment of 14-3-3. Point mutants of Rap1GAP2 deficient in 14-3-3 binding inhibit Rap1-mediated cell adhesion significantly stronger than a Rap1GAP2 mutant that binds 14-3-3 constitutively. Our findings define a novel regulatory mechanism that might contribute to both platelet activation and endothelial inhibition of platelet adhesion and aggregation.
Die Aggregation von Thrombocyten ist ein wichtiger physiologischer Schutzmechanismus zur primären Blutstillung nach Gefäßverletzungen. Dieser Vorgang kann jedoch unter pathologischen Bedingungen zu Herzinfarkten und Schlaganfällen führen. Der Aggregationsprozeß ist durch Ausbildung sogenannter "Fibrinogenbrücken" zwischen verschiedenen Thrombocyten gekennzeichnet. Dies wird durch Bindung von Fibrinogen an das aktivierte Integrin alphaIIbbeta3 auf der Thrombocytenoberfläche ausgelöst. Das kleine G-Protein Rap1B aus der Ras-Superfamilie reguliert den Aktivitätszustand von Integrinen und besitzt damit eine zentrale Rolle bei der Aggregation von Thrombocyten. Die Aktivierung von Rap1B wird durch eine Vielzahl von Plättchenagonisten innerhalb von wenigen Sekunden ausgelöst. Der von Thrombocyten und Gefäßendothelzellen gebildete Botenstoff Stickstoffmonoxid (NO) kann die Thrombocytenaggregation über den NO/cGMP-Signalweg hemmen. Das Signalmolekül NO aktiviert in Thrombocyten die NO-sensitive Guanylyl-Cyclase (sGC), hierdurch wird die Synthese des sekundären Botenstoffes cGMP angeregt. Das cGMP-Molekül aktiviert nachfolgend die cGMP-abhängige Proteinkinase-Ibeta (cGK-Ibeta), welche die aggregationshemmende NO-Wirkung vermittelt. Die verantwortlichen Zielproteine der cGK-Ibeta wurden bis heute jedoch nicht hinreichend aufgeklärt. In der vorliegenden Arbeit sollten verschiedene Aspekte der NO-induzierten Hemmung der Thrombocytenaggregation untersucht werden. Dabei wurden neue Mechanismen dieser Inhibition identifiziert. Zum einen konnte eine kinetisch schnelle Hemmung der Rap1B-Aktivierung in Thrombocyten nachgewiesen werden. Zum anderen konnten einer cGK-Ibeta-vermittelten, kinetisch langsamen Rap1B-Phosphorylierung hemmende Effekte auf die Membranlokalisation von Rap1B in MDCK-Zellen und auf die Zellausbreitung von Hela-Zellen zugeordnet werden. Weiterhin wurde im Rahmen dieser Arbeit eine neue Proteininteraktion zwischen dem mitochondrialen CGI-51-Protein und Rap1B identifiziert und verifiziert. Zur Aufklärung eines Einflusses des NO/cGMP-Signalweges auf die Aktivierung von Rap1B in Thrombocyten wurde die NO/sGC/cGMP/cGK-Ibeta-Signalkaskade auf verschiedenen Stufen aktiviert oder gehemmt, bevor anschließend die Rap1GTPBildung mit verschiedenen Plättchenagonisten induziert wurde. Das aktive Rap1B wurde unter Verwendung eines Rap1GTP-bindenden Fusionsproteins präzipitiert und nachgewiesen. Durch NO-freisetzende Substanzen konnte eine Hemmung der Rap1BAktivierung erreicht werden. Auch die Aktivierung der sGC mit einem spezifischen Aktivator führte zur Inhibition von Rap1B. Die direkte Aktivierung der cGK-Ibeta konnte Rap1B ebenfalls hemmen, während eine Blockade der cGK-Ibeta die NO-induzierte Hemmung der Rap1-Aktivierung verhinderte. Die genannten Effekte des NO/cGMP-Signalwegs waren unabhängig vom Stimulus, der zur Rap1B-Aktivierung genutzt wurde, sowohl die Aktivierung über verschiedene G-Protein-gekoppelte Rezeptoren (GPCR) als auch die Aktivierung über Tyrosin-Kinasen wurden gehemmt. Eine detailliertere Untersuchung ergab, daß cGK-Ibeta die Ca2+-unabhängige Aktivierung von Rap1B hemmen konnte. Die Rolle der cGK-Ibeta wurde abschließend im unabhängigen Zellsystem der Megakaryocyten abgesichert. Die Hemmung der Rap1B-Aktivierung durch den NO/cGMP-Signalweg stellt einen schnellen Regulationsmechanismus zur Inhibition der Thrombocytenaggregation dar. Aus der Literatur ist eine kinetisch langsame Phosphorylierung von Rap1B an Serin-179 durch cGK-Ibeta bekannt. Zur Ermittlung ihrer Funktion wurden mikroskopische Untersuchungen der subzellulären Rap1B-Lokalisation in lebenden MDCK-Zellen durchgeführt. Hierbei konnte gezeigt werden, daß eine nicht-phosphorylierbare Rap1BMutante eine ausgeprägte Membranlokalisation aufweist, während eine phosphomimetische Rap1B-Mutante bevorzugt cytoplasmatisch lokalisiert ist. In einer weiterführenden Studie wurde der Effekt dieser Rap1B-Mutanten auf das Zellausbreitungsverhalten von Hela-Zellen analysiert. Die Expression der nichtphosphorylierbaren Rap1B-Mutante führte dabei zu einer signifikant gesteigerten Zellausbreitung, welche hingegen durch eine phosphomimetische Rap1B-Mutante deutlich abgeschwächt war. Dies impliziert einen zusätzlichen Mechanismus, über den der NO/cGMP-Signalweg die Adhäsion bzw. die Aggregation von Thrombocyten regulieren kann. Zur Identifizierung von neuen Interaktionspartnern, die spezifisch an phosphoryliertes Rap1B binden und dessen subzelluläre Verteilung oder Aktivität regulieren, wurde das Yeast-Two-Hybrid-System eingesetzt. Hierbei konnte das mitochondriale CGI-51-Protein als neuer Bindepartner von Rap1B identifiziert und in Säugerzellen verifiziert werden. Eine phosphospezifische Interaktion konnte allerdings nicht nachgewiesen werden. Das CGI-51-Protein spielt eine wichtige Rolle bei der Proteinsortierung in der äußeren Mitochondrienmembran. Die Funktion der Interaktion von CGI-51-Protein mit Rap1B wurde im Rahmen dieser Arbeit nicht untersucht. Zusammenfassend kann gesagt werden, daß in der vorliegenden Arbeit erstmalig neue Erkenntnisse zur Regulation des kleinen G-Proteins Rap1B durch den NO/cGMP-Signalweg dargestellt sind. Dieser Regelmechanismus besitzt eine physioplogische Bedeutung bei der Inhibition der Thrombocytenaggregation.
GTPase-activating proteins are required to terminate signaling by Rap1, a small guanine nucleotide-binding protein that controls integrin activity and cell adhesion. Recently, we identified Rap1GAP2, a GTPase-activating protein of Rap1 in platelets. Here we show that 14-3-3 proteins interact with phosphorylated serine 9 at the N terminus of Rap1GAP2. Platelet activation by ADP and thrombin enhances serine 9 phosphorylation and increases 14-3-3 binding to endogenous Rap1GAP2. Conversely, inhibition of platelets by endothelium-derived factors nitric oxide and prostacyclin disrupts 14-3-3 binding. These effects are mediated by cGMP- and cAMP-dependent protein kinases that phosphorylate Rap1GAP2 at serine 7, adjacent to the 14-3-3 binding site. 14-3-3 binding does not change the GTPase-activating function of Rap1GAP2 in vitro. However, 14-3-3 binding attenuates Rap1GAP2 mediated inhibition of cell adhesion. Our findings define a novel crossover point of activatory and inhibitory signaling pathways in platelets.