Refine
Year of publication
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- Diagnostik (2)
- Experimental nuclear physics (2)
- Experimental particle physics (2)
- Früherkennung (2)
- Mammakarzinom (2)
- Nachsorge (2)
- Richtlinie (2)
- breast cancer (2)
- diagnosis (2)
- follow‑up (2)
In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD)1. These partons subsequently emit further partons in a process that can be described as a parton shower2, which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQ and energy E, within a cone of angular size mQ/E around the emitter3. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques4,5 to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.
Measurements of event-by-event fluctuations of charged-particle multiplicities in Pb–Pb collisions at sNN−−−√ = 2.76 TeV using the ALICE detector at the CERN Large Hadron Collider (LHC) are presented in the pseudorapidity range |η|<0.8 and transverse momentum 0.2<pT<2.0 GeV/c. The amplitude of the fluctuations is expressed in terms of the variance normalized by the mean of the multiplicity distribution. The η and pT dependences of the fluctuations and their evolution with respect to collision centrality are investigated. The multiplicity fluctuations tend to decrease from peripheral to central collisions. The results are compared to those obtained from HIJING and AMPT Monte Carlo event generators as well as to experimental data at lower collision energies. Additionally, the measured multiplicity fluctuations are discussed in the context of the isothermal compressibility of the high-density strongly-interacting system formed in central Pb–Pb collisions.
In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of 3He¯¯¯¯¯¯ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as input to calculations of the transparency of our Galaxy to the propagation of 3He¯¯¯¯¯¯ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing 3He¯¯¯¯¯¯ momentum from 25% to 90% for cosmic-ray sources. The results indicate that 3He¯¯¯¯¯¯ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.
Antimatter particles such as positrons and antiprotons abound in the cosmos. Much less common are light antinuclei, composed of antiprotons and antineutrons, which can be produced in our galaxy via high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of the still undiscovered dark-matter particles. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators like the Large Hadron Collider (LHC). Though the properties of elementary antiparticles have been studied in detail, knowledge of the interaction of light antinuclei with matter is rather limited. This work focuses on the determination of the disappearance probability of \ahe\ when it encounters matter particles and annihilates or disintegrates. The material of the ALICE detector at the LHC serves as a target to extract the inelastic cross section for \ahe\ in the momentum range of 1.17≤p<10 GeV/c. This inelastic cross section is measured for the first time and is used as an essential input to calculations of the transparency of our galaxy to the propagation of 3He¯¯¯¯¯¯ stemming from dark-matter decays and cosmic-ray interactions within the interstellar medium. A transparency of about 50% is estimated using the GALPROP program for a specific dark-matter profile and a standard set of propagation parameters. For cosmic-ray sources, the obtained transparency with the same propagation scheme varies with increasing 3He¯¯¯¯¯¯ momentum from 25% to 90%. The absolute uncertainties associated to the 3He¯¯¯¯¯¯ inelastic cross section measurements are of the order of 10%−15%. The reported results indicate that 3He¯¯¯¯¯¯ nuclei can travel long distances in the galaxy, and can be used to study cosmic-ray interactions and dark-matter decays.
The repertoire of natural products offers tremendous opportunities for chemical biology and drug discovery. Natural product-inspired synthetic molecules represent an ecologically and economically sustainable alternative to the direct utilization of natural products. De novo design with machine intelligence bridges the gap between the worlds of bioactive natural products and synthetic molecules. On employing the compound Marinopyrrole A from marine Streptomyces as a design template, the algorithm constructs innovative small molecules that can be synthesized in three steps, following the computationally suggested synthesis route. Computational activity prediction reveals cyclooxygenase (COX) as a putative target of both Marinopyrrole A and the de novo designs. The molecular designs are experimentally confirmed as selective COX-1 inhibitors with nanomolar potency. X-ray structure analysis reveals the binding of the most selective compound to COX-1. This molecular design approach provides a blueprint for natural product-inspired hit and lead identification for drug discovery with machine intelligence.
Wenn Klimaforscher wissen wollen, was die Zukunft
bringt, schauen sie gern in die Vergangenheit. Während
der Kreidezeit herrschte auf der Erde ein Treibhausklima
mit atmosphärischen CO2-Gehalten, die weitaus
höher waren als heute. Welche Konsequenzen das für
die Meeresströmungen und die marinen Ökosysteme
hatte, können Geowissenschaftler heute nicht mehr direkt
messen. Bei der Spurensuche helfen ihnen die
Fossilien mikroskopisch kleiner Einzeller, deren wunderschöne
Kalkschalen als Klimagedächtnis dienen.
This is a randomized trial (ATHENA study) in de novo kidney transplant patients to compare everolimus versus mycophenolic acid (MPA) with similar tacrolimus exposure in both groups, or everolimus with concomitant tacrolimus or cyclosporine (CsA), in an unselected population. In this 12-month, multicenter, open-label study, de novo kidney transplant recipients were randomized to everolimus with tacrolimus (EVR/TAC), everolimus with CsA (EVR/CsA) or MPA with tacrolimus (MPA/TAC), with similar tacrolimus exposure in both groups. Non-inferiority of the primary end point (estimated glomerular filtration rate [eGFR] at month 12), assessed in the per-protocol population of 338 patients, was not shown for EVR/TAC or EVR/CsA versus MPA/TAC. In 123 patients with TAC levels within the protocol-specified range, eGFR outcomes were comparable between groups. The mean increase in eGFR during months 1 to 12 post-transplant, analyzed post hoc, was similar with EVR/TAC or EVR/CsA versus MPA/TAC. The incidence of treatment failure (biopsy proven acute rejection, graft loss or death) was not significant for EVR/TAC but significant for EVR/CsA versus MPA/TAC. Most biopsy-proven acute rejection events in this study were graded mild (BANFF IA). There were no differences in proteinuria between groups. Cytomegalovirus and BK virus infection were significantly more frequent with MPA/TAC. Thus, everolimus with TAC or CsA showed comparable efficacy to MPA/TAC in de novo kidney transplant patients. Non-inferiority of renal function, when pre-specified, was not shown, but the mean increase in eGFR from month 1 to 12 was comparable to MPA/TAC.
Aim: To compare clinical success and complications of uncovered self-expanding metal stents (SEMS) vs covered SEMS (cSEMS) in obstruction of the small bowel.
Methods: Technical success, complications and outcome of endoscopic SEMS or cSEMS placement in tumor related obstruction of the duodenum or jejunum were retrospectively assessed. The primary end points were rates of stent migration and overgrowth. Secondary end points were the effect of concomitant biliary drainage on migration rate and overall survival. The data was analyzed according to the Strengthening the Reporting of Observational Studies in Epidemiology guidelines.
Results: Thirty-two SEMS were implanted in 20 patients. In all patients, endoscopic stent implantation was successful. Stent migration was observed in 9 of 16 cSEMS (56%) in comparison to 0/16 SEMS (0%) implantations (P = 0.002). Stent overgrowth did not significantly differ between the two stent types (SEMS: 3/16, 19%; cSEMS: 2/16, 13%). One cSEMS dislodged and had to be recovered from the jejunum by way of laparotomy. Time until migration between SEMS and cSEMS in patients with and without concomitant biliary stents did not significantly differ (HR = 1.530, 95%CI 0.731-6.306; P = 0.556). The mean follow-up was 57 ± 71 d (range: 1-275 d).
Conclusion: SEMS and cSEMS placement is safe in small bowel tumor obstruction. However, cSEMS is accompanied with a high rate of migration in comparison to uncovered SEMS.
During the Late Cretaceous and early Cenozoic the Earth experienced prolonged climatic cooling most likely caused by decreasing volcanic activity and atmospheric CO2 levels. However, the causes and mechanisms of subsequent major global warming culminating in the late Paleocene to Eocene greenhouse climate remain enigmatic. We present deep and intermediate water Nd-isotope records from the North and South Atlantic to decipher the control of the opening Atlantic Ocean on ocean circulation and its linkages to the evolution of global climate. The marked convergence of Nd-isotope signatures 59 million years ago indicates a major intensification of deep-water exchange between the North and South Atlantic, which coincided with the turning point of deep-water temperatures towards early Paleogene warming. We propose that this intensification of Atlantic overturning circulation in concert with increased atmospheric CO2 from continental rifting marked a climatic tipping point contributing to a more efficient distribution of heat over the planet.