Refine
Document Type
- Article (2)
- Diploma Thesis (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Colonic neoplasms (1)
- Control (1)
- Endoscopy (1)
- Hochdruckentladung (1)
- Prevention (1)
- Registries (1)
- Safety (1)
- Spinpolarisation (1)
- Teilchenquelle (1)
- Teilchenquelle Spinpolarisation Metastabiler Zustand (1)
Background/Aims: Reliable and especially widely accepted preventive measures are crucial to further reduce the incidence of colorectal cancer (CRC). Colon capsule endoscopy (CCE) might increase the screening numbers among patients unable or unwilling to undergo conventional colonoscopy. This registry trial aimed to document and determine the CCE indications, findings, complications, and adverse events in outpatient practices and clinics throughout Germany.
Methods: Patients undergoing CCE between 2010 and 2015 were enrolled in this prospective multicenter registry trial at six German centers. Patient demographics, outcomes, and complications were evaluated.
Results: A total of 161 patients were included. Of the CCE evaluations, 111 (68.9%) were considered successful. Pathological findings in the colon (n=92, 60.1%) and in the remaining gastrointestinal tract (n=38, 24.8%) were recorded. The main finding was the presence of polyps (n=52, 32.3%). Furthermore, five carcinomas (3.1%) were detected and histologically confirmed later. Adequate bowel cleanliness was more likely to be achieved in the outpatient setting (p<0.0001). Interestingly, 85 patients (55.6%) chose to undergo CCE based on personal motivation.
Conclusions: CCE seems to be a reliable and safe endoscopic tool for screening for CRC and detecting other diseases. Its patient acceptance and feasibility seems to be high, especially in the outpatient setting.
Die vorliegende Arbeit befaßt sich mit der Planung und dem Aufbau der mehrkanaligen Strahlführung im Anschluß an den VE-RFQ Beschleuniger der Frankfurter EZR-VE-RFQ Anlage. Die Umsetzung der mit Hilfe von Simulationen gefundenen Strahlführung war ebenso Gegenstand dieser Arbeit wie erste Tests der neuen Anlagenkomponenten. Mit der Fertigstellung dieses Teilabschnitts steht jetzt der Energiebereich von 100–200 keV/u ergänzt durch den niederenergetischen Bereich von 5–60 kV für Experimente mit mehrfach geladenen Ionen in zwei von drei geplanten Strahlkanälen zur Verfügung. Die Kombination, bestehend aus EZR-Ionenquelle und VE-RFQBeschleuniger, erlaubt einerseits atomphysikalische Experimente mit speziell präparierten Ionenstrahlen und verschiedenen Ionensorten. Andererseits liefert die verwendete Ionenquelle hohe Intensitäten an mehrfach geladenen Ionen, die für spezielle Anwendungen der Materialforschung benötigt werden. Diese Arbeit gliedert sich in drei Abschnitte, im ersten Schritt wurde die HF-Einkopplung des Beschleunigers modifiziert und der Ionenstrahl im transversalen Phasenraum charakterisiert. Dabei hat sich gezeigt, daß die experimentell gefundene Geometrie der Einkoppelschleife im Betrieb nur in einem sehr geringen Bereich verfahren werden muß, um optimale Anpassung über den gesamten Frequenzbereich zu erreichen. Auf Basis der gemessenen Emittanzen erfolgte die Planung der Strahlführung mit Hilfe von Simulationsprogrammen im zweiten Schritt. Das Ziel war der Aufbau von drei Strahlkanälen mit unterschiedlichen Anforderungen an das Profil des Ionenstrahls. Im letzten Schritt stand die Umsetzung der geplanten Strahlführung. Verbunden mit diesem Schritt war die Konstruktion und Vermessung der ionenoptischen Elemente und der Aufbau der Strahlführung unter Verwendung von vorhandenen magnetischen Quadrupolen und Ablenkmagneten. Abschließend wurde die Funktionsfähigkeit des vorgestellten Aufbaus als Bestandteil der kompletten EZR-VE-RFQ-Anlage im Betrieb getestet. Im Rahmen des Aufbaus und der ersten Experimente waren diverse technische Fragestellungen aus dem Bereich der Beschleunigerphysik, über die Ionenoptik bis hin zur Ionenquellenphysik zu bearbeiten und Probleme zu lösen. Die ersten Tests der einzelnen ionenoptischen Elemente und der Betrieb der gesamten Strahlführung haben gezeigt, daß die gestellten Aufgaben erfüllt werden. Nach der Fertigstellung des Grundaufbaus der Strahlführung für die nachbeschleunigten Ionen durch den Aufbau des noch fehlenden 90°-Kanals und den Aufbau einer Strahldiagnose, muß im nächsten Schritt die Optimierung der einzelnen Strahlkanäle erfolgen. Das Ziel liegt dabei in der Verbesserung der Transmission und der Qualität der zur Verfügung gestellten Ionenstrahlen. Damit verbunden ist auch die Charakterisierung der Ionenstrahlen in den verschiedenen Strahlzweigen. Unabhängig davon ist die Untersuchung der Injektion in den RFQ notwendig, zur Verbesserung der Anpassung des Quellenstrahls an die Akzeptanz des Beschleunigers und zur Diagnose der Ursache für die Teilchenverluste in diesem Teilabschnitt des Aufbaus.
Mikroentladungen bei hohem Druck und mit Gasfluss stellen eine vielseitig nutzbare Quelle für Ionen und kalte metastabile Atome dar. In dieser Arbeit werden grundlegende Untersuchungen an dieser neuen Hochdruckentladung zur Erzeugung von metastabilen Atomen und einfachgeladenen Ionen vorgestellt. Der innovative Ansatz ist die Nutzung mikrostrukturierter Elektroden (MSE) zur Erzeugung von nichtthermischen Entladungen mit Gleichspannung. Die spezielle porenförmige Geometrie erlaubt die Erzeugung von Entladungen bei einem Druck > 1000 hPa. Die Mikroentladung produziert metastabile Atome und Ionen in einem lokalisierten Volumen durch Stöße mit energiereichen Elektronen, wobei das Neutralgas in der Entladung im Vergleich zu den Elektronen kalt ist. Außerdem kann die Entladung mit erzwungenem Gasfluss durch die Pore betrieben werden, so dass die Plasmabestandteile (neutrale/angeregte Atome, Radikale, Ionen, etc.) extrahiert werden. Mit dieser neuen Methode kann bei der adiabatischen Expansion des Gases ins Vakuum ein gerichteter Gasstrahl, mit geringer interner Temperatur, im Bereich von einigen K erzeugt werden. Die Verweildauer des Gases in der Mikropore ist < 0,1 µs, so dass auch Zustände mit kurzer Lebensdauer extrahiert werden können. Die MSE lässt sich aufgrund der kleinen Abstände im µm Bereich als Mehrschichtsystem, aus zwei metallischen Elektroden, die durch einen Isolator getrennt sind, realisieren. Dieses Grundmaterial wird mit einzelnen oder einer Vielzahl von Poren mit typischerweise 100 µm Durchmesser versehen. Mit Hilfe dieser Mikrostrukturen lassen sich stabile, nicht filamentre, homogene Entladungen mit Gleichspannung in allen Gasen als auch Gasgemischen in einem weiten Druckbereich von 600 hPa bis 4000 hPa erzeugen. Die Druckverhältnisse in der Pore lassen sich durch den Gasfluss zwischen einigen ml/min bis l/min variieren. Die Verweildauer des Gases in der Pore kann durch den Gasfluss gesteuert werden. Zur Diagnose werden die Bestandteile des Plasmas mit dem Gasstrom extrahiert und expandieren adiabatisch ins Vakuum. Der Einfluss von Vordruck, Gasfluss, Entladestrom und Gaszusammensetzung auf die Eigenschaften des Plasma-Jets konnte auf diese Weise bestimmt werden. Durch die Kühlung der Mikroentladung konnte die interne Temperatur des Targets nochmals gesenkt und die Geschwindigkeit gezielt reduziert werden. Die Messung des Geschwindigkeitsprofils, die Zusammensetzung, etc. geben einen indirekten Einblick in die komplexen Prozesse der Mikroentladung, die mit konventionellen Analysemethoden nur schwer zugnglich sind. Die gemessenen Eigenschaften der MSE- unterstützten Hochdruckentladung sind vergleichbar mit klassischen Glimmentladungen, jedoch ist die Anregungs- und Ionisationswahrscheinlichkeit aufgrund der Geometrie größer. Unter definierten Rahmenbedingungen erlaubt diese neue Technik die Erzeugung eines gerichteten Plasma-Jets bestehend aus kalten metastabilen Atomen, Ionen, etc. Basierend auf diesem Prinzip wurde eine Quelle für metastabile Heliumatome aufgebaut und mit verschiedenen Methoden analysiert. Der 23S1- Zustand wird aufgrund seiner atomaren Struktur effektiv durch die energiereichen Elektronen in der Entladung angeregt. Die Gasströmung bestimmt den Druck und die Verweildauer im aktiven Volumen. Die Untersuchungen haben gezeigt, dass mit diesem Aufbau kalte, metastabile Atomstrahlen mit einer Intensität von 6 mal 10 hoch 13 (s mal sr) hoch minus 1 und Geschwindigkeiten von 900-1800 m/s erzeugt werden können. Bei den gemessenen Dichten in der Pore von 6 mal 10 hoch 12 (cm) hoch minus 3 ist die Ausbeute durch das Quenching der metastabilen Atome beschränkt. Die Eigenschaften dieses exotischen Atomstrahls sind hinsichtlich der absoluten Geschwindigkeit und der Geschwindigkeitsverteilung identisch mit einem konventionellen Überschall-Gasstrahl. Die Qualität des Strahls, aufgrund seiner geringen internen Temperatur von einigen K, erlaubt die Trennung und Fokussierung des gewünschten Zustandes. In Kombination mit der Separationseinheit wurde die Mikroplasmaquelle zur Erzeugung eines metastabilen 2 3 S 1-Heliumtargets mit polarisiertem Elektronenspin verwendet. Bei der Separation wird durch den außermittigen Einschuss in den permanentmagnetischen Hexapol eine hervorragende räumliche Trennung der verschiedenen Zustände erreicht und die Ausdehnung des Targets im Fokus auf 1 mm hoch 2 reduziert. Die erreichte Targetdichte für den spinpolarisierten 2 3 S 1-Zustand liegt im Fokus bei 10 hoch 6 cm hoch -2. Die Charakterisierung des Strahlverlaufs als auch die Time-of-Flight-Messungen zeigen, dass es sich bei der MSE unterstützten Hochdruckentladung um eine nichtthermische Entladung mit vergleichbaren Eigenschaften wie Niederdruckglimmentladung handelt, d.h. neutrale/angeregte Atome und Elektronen sind nicht im Temperaturgleichgewicht. Die Gastemperatur wird somit in der Mikroentladung nicht erhöht. Die Messungen mit Düsentemperatur von 80 K haben dies ausnahmslos bestätigt. Mit dieser Quelle lassen sich auch feine Ionenstrahlen bei hohem Druck erzeugen. Bei erzwungener Gasströmung durch die Entladung werden die Ionen aus dem Bereich der Entladung extrahiert und können zur Diagnose der Hochdruckentladung ins Vakuum überführt werden. Die Ionenausbeute wurde für verschiedene Gase und Gasgemische in Abhängigkeit von Gasfluss, Entladestrom, Extraktionsspannung untersucht. Die Elektronenenergie reicht ausschließlich zur Produktion von einfachgeladenen Ionen bzw. Molekülen aus. Der Anteil an Metallionen zeigt deutlich, dass die Geometrie die Erzeugung von Sekundärelektronen an der Kathode unterstützt. Die Wechselwirkung der Ionen mit dem Überschall-Gasstrahl im Bereich zwischen Düse und Skimmer führt zu einer starken Energieverbreiterung. Dies kann jedoch durch eine modifizierte Extraktionsgeometrie reduziert werden, hierbei ist insbesondere auf die Raumladung im Bereich zwischen Düse und Skimmer zu achten. Die vorgestellten Messungen haben exemplarisch für Helium gezeigt, dass gerichtete, kalte, metastabile Atomstrahlen mit ausreichender Intensität für atomphysikalische Experimente erzeugt werden können. Auf Basis der grundlegenden Erkenntnisse lässt sich das spinpolarisierte Target im nächsten Schritt hinsichtlich der erreichten Ausbeute optimieren. Dazu ist es notwendig, die Bedingungen in der Expansionskammer zu verbessern, so dass die Plasmaquelle mit höherem Vordruck betrieben werden kann. In diesem Zusammenhang sollte auch der Abstand Düse Skimmer verringert und die Separationseinheit auf diese modifizierten Rahmenbedingungen angepasst werden. Durch diese Modifikation kann die Targetdichte für spinpolarisiertes, metastabiles Helium nochmals gesteigert werden. Mit der erreichten Targetdichte sind die grundlegenden Voraussetzungen für atomphysikalische Messungen an einem spinpolarisierten Target geschaffen. Durch Anpassung der Separationseinheit ist es prinzipiell auch möglich, andere exotische metastabile Targets mit polarisiertem Elektronenspin zu erzeugen.
Time resolved measurements of the biased disk effect at an Electron Cyclotron Resonance Ion Source
(1999)
First results are reported from time resolved measurements of ion currents extracted from the Frankfurt 14 GHz Electron Cyclotron Resonance Ion Source with pulsed biased-disk voltage. It was found that the ion currents react promptly to changes of the bias. From the experimental results it is concluded that the biased disk effect is mainly due to improvements of the extraction conditions for the source and/or an enhanced transport of ions into the extraction area. By pulsing the disk voltage, short current pulses of highly charged ions can be generated with amplitudes significantly higher than the currents obtained in continuous mode.