Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
Der Elektronentransfer von NADH zu Sauerstoff ist ein essentieller Bestandteil im Energiehaushalt der Zelle und wird durch transmembrane Enzymkomplexe vermittelt. Hohe Geschwindigkeit und Spezifität dieser Reaktionen sind dabei von großer Bedeutung. In der Atmungskette von Paracoccus denitrificans und Thermus thermophilus wird Sauerstoff durch Cytochrom c Oxidasen umgesetzt. Beide Enzymkomplexe erhalten die für diese Reaktion notwendigen Elektronen von einem Cytochrom c552 in einer sehr schnellen bimolekularen Reaktion bei hoher Selektivität für das Partnerprotein. Hauptziel dieser Arbeit war es, lösliche Module der elektronenakzeptierenden CuA-Domäne der Cytochrom c Oxidasen zu generieren, das Kupferzentrum zu rekonstituieren und die Proteine für Wechselwirkungsstudien mit den Cytochrom c-Partnern zugänglich zu machen. Die Charakterisierung der Elektronentransferreaktionen erfolgte durch stopped-flow Spektroskopie und ermöglichte die Bestimmung der bimolekularen Reaktionsgeschwindigkeitskonstanten unter verschiedenen Ionenstärkebedingungen. Ein Vergleich zwischen dem mesophilen Reaktionspaar aus P. denitrificans mit dem thermophilen aus T. thermophilus zeigte die unterschiedlichen Interaktionsmechanismen auf. Während die Reaktion in T. thermophilus weitgehend auf Ladungsinteraktionen verzichtet, wurde für die Reaktanden aus P. denitrificans eine Beteiligung von 2 - 3 Ladungen mit entgegengesetztem Vorzeichen auf jedem Protein festgestellt. Die Interaktionen wurden weiterhin durch chemical-shift-perturbation Experimente mittels NMR-Spektroskopie charakterisiert. Durch Isotopenanreicherung des Cytochroms c552 aus P. denitrificans konnten für dieses Protein Aminosäurereste identifiziert werden, die an einer direkten Bindung mit dem CuA-Partnerprotein beteiligt sind. In einem ähnlichen Ansatz wurde auch die Interaktionsfläche der löslichen CuA-Domäne aus T. thermophilus charakterisiert. Für das Cytochrom c552 aus P. denitrificans konnte gezeigt werden, daß bei direkten Kontakten zwischen den Proteinen fast keine Ladungen beteiligt sind und primär ungeladene Reste die Wechselwirkung dominieren. Ein ähnliches Bild wurde auch für die Interaktion der löslichen CuA-Domäne aus T. thermophilus mit ihrem Substrat ermittelt. Für die lösliche CuA-Domäne aus P. denitrificans konnte aufgrund der geringen Stabilität keine Zuordnung durchgeführt werden, so daß eine Charakterisierung der Interaktionsfläche nicht möglich war. Weiterhin wurde ein für T. thermophilus bisher nicht beschriebener Komplex III aufgrund von Sequenzdaten identifiziert. Eine lösliche Domäne des membranständigen Cytochrom c1 wurde in E. coIi heterolog exprimiert, aufgereinigt und charakterisiert. Die Elektronentransferkinetiken zum Cytochrom c552 wurden durch stopped-flow Spektroskopie aufgenommen, und das Cytochrom c1 wurde als effizienter Elektronendonor für das Protein identifiziert. Für spätere Mutageneseansätze wurde ein Plasmid-basiertes Expressionssystem für das extrem thermophile Eubakterium T. thermophilus etabliert, um Schwierigkeiten, die bei der Expression von Cofaktor-tragenden Membranproteinen auftreten können, zu umgehen. Durch Expression eines löslichen c-Typ Cytochroms und der ba3-Cytochrom c Oxidase in T. thermophilus konnte gezeigt werden, daß dieses homologe Expressionssystem funktional ist und damit rekombinante Proteine exprimiert werden können. Durch die Konstruktion von Histidin-Tags konnte die Aufreinigung der Proteine erleichtert werden und eine notwendige Abgrenzung von chromosomal kodierten Wildtyp-Formen erfolgen.
The structural analysis of the redox complex between the soluble cytochrome c552 and the membrane-integral cytochrome ba3 oxidase of Thermus thermophilus is complicated by the transient nature of this protein-protein interaction. Using NMR-based chemical shift perturbation mapping, however, we identified the contact regions between cytochrome c552 and the CuA domain, the fully functional water-soluble fragment of subunit II of the ba3 oxidase. First we determined the complete backbone resonance assignments of both proteins for each redox state. Subsequently, two-dimensional [15N,1H]TROSY spectra recorded for each redox partner both in free and complexed state indicated those surface residues affected by complex formation between the two proteins. This chemical shift analysis performed for both redox states provided a topological description of the contact surface on each partner molecule. Remarkably, very pronounced indirect effects, which were observed on the back side of the heme cleft only in the reduced state, suggested that alterations of the electron distribution in the porphyrin ring due to formation of the protein-protein complex are apparently sensed even beyond the heme propionate groups. The contact residues of each redox partner, as derived from the chemical shift perturbation mapping, were employed for a protein-protein docking calculation that provided a structure ensemble of 10 closely related conformers representing the complex between cytochrome c552 and the CuA domain. Based on these structures, the electron transfer pathway from the heme of cytochrome c552 to the CuA center of the ba3 oxidase has been predicted.
Different interaction modes of two cytochrome-c oxidase soluble CuA fragments with their substrates
(2003)
Cytochrome-c oxidase is the terminal enzyme in the respiratory chains of mitochondria and many bacteria and catalyzes the formation of water by reduction of dioxygen. The first step in the cytochrome oxidase reaction is the bimolecular electron transfer from cytochrome c to the homobinuclear mixed-valence CuA center of subunit II. In Thermus thermophilus a soluble cytochrome c552 acts as the electron donor to ba3 cytochrome-c oxidase, an interaction believed to be mainly hydrophobic. In Paracoccus denitrificans, electrostatic interactions appear to play a major role in the electron transfer process from the membrane-spanning cytochrome c552. In the present study, soluble fragments of the CuA domains and their respective cytochrome c electron donors were analyzed by stopped-flow spectroscopy to further characterize the interaction modes. The forward and the reverse electron transfer reactions were studied as a function of ionic strength and temperature, in all cases yielding monoexponential time-dependent reaction profiles in either direction. From the apparent second-order rate constants, equilibrium constants were calculated, with values of 4.8 and of 0.19, for the T. thermophilus and P. denitrificans c552 and CuA couples, respectively. Ionic strength strongly affects the electron transfer reaction in P. denitrificans indicating that about five charges on the protein interfaces control the interaction, when analyzed according to the Brønsted equation, whereas in the T. thermophilus only 0.5 charges are involved. Overall the results indicate that the soluble CuA domains are excellent models for the initial electron transfer processes in cytochrome-c oxidases.