Refine
Document Type
- Conference Proceeding (3)
- Article (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Institute
- Physik (3)
Since the last 20 years, modern heuristic algorithms and machine learning have been increasingly used for several purposes in accelerator technology and physics. Since computing power has become less and less of a limiting factor, these tools have become part of the physicist community's standard toolkit [1][2] [3] [4] [5]. This paper describes the construction of an algorithm that can be used to generate an optimised lattice design for transfer lines under the consideration of restrictions that usually limit design options in reality. The developed algorithm has been applied to the existing SIS18 to HADES transfer line in GSI.
In Europe, commercially available extracts from the white-berry mistletoe (Viscum album L.) are widely used as a complementary cancer therapy. Mistletoe lectins have been identified as main active components and exhibit cytotoxic effects as well as immunomodulatory activity. Since it is still not elucidated in detail how mistle toe extracts such as ISCADOR communicate their effects, we analyzed the mechanisms that might be responsible for their antitumoral function on a molecular and functional level. ISCADOR-treated glioblastoma (GBM) cells down-regulate central genes involved in glioblastoma progression and malignancy such as the cytokine TGF-β and matrix-metalloproteinases. Using in vitro glioblastoma/immune cell co-cultivation assays as well as measurement of cell migration and invasion, we could demonstrate that in glioblastoma cells, lectin-rich ISCADOR M and ISCADOR Q significantly enforce NK-cell-mediated GBM cell lysis. Beside its immune stimulatory effect, ISCADOR reduces the migratory and invasive potential of glioblastoma cells. In a syngeneic as well as in a xenograft glioblastoma mouse model, both pretreatment of tumor cells and intratumoral therapy of subcutaneously growing glioblastoma cells with ISCADOR Q showed delayed tumor growth. In conclusion, ISCADOR Q, showing multiple positive effects in the treatment of glioblastoma, may be a candidate for concomitant treatment of this cancer.
The ARMADILLO bunch compressor currently being designed at IAP is capable of reaching a longitudinal pulse compression ratio of 45 for proton beams of 150 mA at 2 MeV. It will provide one nanosecond proton pulses with a peak current of 7.7 A. The system guides nine linacμbunches deflected by a 5 MHz rf kicker and uses four dipole magnets - two homogeneous and two with field gradients - to merge them on the target. For longitudinal focusing and an energy variation of ±200 keV two multitrack rf cavities are included. ARMADILLO will be installed at the end of the Frankfurt Neutron Source FRANZ making use of the unique 250 kHz time structure. This contribution will provide an overview of the layout of the system as well as recent advances in component design and beam dynamics of the compressor.
This novel kind of neutron beam facility will provide 1 ns short neutron pulses with an approximately thermal energy distribution around 30 keV. The pulse repetition rate will be up to 250 kHz, the total proton number per pulse will be up to 6×1010 in the final stage, starting with a p – source current of 200 mA. A second target station will allow n – activation experiments by cw beam operation. An intense 2 MeV proton beam will drive a neutron source by the 7 Li (p,n) 7 Be reaction. The facility is under construction at the physics experimental hall of the J.W. Goethe – University. The 1m thick concrete tunnel was installed in 2009. In 2011 all rf amplifiers will be delivered and installed. Successful 200 mA proton source experiments in 2010 at a test stand will be followed by experiments on the 120 kV FRANZ terminal in 2011. The 250 kHz, 100 ns chopper in front of the rf linac is under construction, while the 2 MeV bunch compressor design was finished and the technical design of all components has started. The main accelerator cavity is under construction. First 2 MeV beam tests are expected for end of 2012.