Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Colorectal cancer (1)
- Extended donor criteria (1)
- Oncogenes (1)
- Organ allocation (1)
- Pancreas transplantation (1)
- Rejection (1)
Institute
Background: Simultaneous pancreas kidney transplantation (SPK), pancreas transplantation alone (PTA) or pancreas transplantation after kidney (PAK) are the only curative treatment options for patients with type 1 (juvenile) diabetes mellitus with or without impaired renal function. Unfortunately, transplant waiting lists for this indication are increasing because the current organ acceptability criteria are restrictive; morbidity and mortality significantly increase with time on the waitlist. Currently, only pancreas organs from donors younger than 50 years of age and with a body mass index (BMI) less than 30 are allocated for transplantation in the Eurotransplant (ET) area. To address this issue we designed a study to increase the available donor pool for these patients.
Methods/Design: This study is a prospective, multicenter (20 German centers), single blinded, non-randomized, two armed trial comparing outcome after SPK, PTA or PAK between organs with the currently allowed donor criteria versus selected organs from donors with extended criteria. Extended donor criteria are defined as organs procured from donors with a BMI of 30 to 34 or a donor age between 50 and 60 years. Immunosuppression is generally standardized using induction therapy with Myfortic, tacrolimus and low dose steroids. In principle, all patients on the waitlist for primary SPK, PTA or PAK are eligible for the clinical trial when they consent to possibly receiving an extended donor criteria organ. Patients receiving an organ meeting the current standard criteria for pancreas allocation (control arm) are compared to those receiving extended criteria organ (study arm); patients are blinded for a follow-up period of one year. The combined primary endpoint is survival of the pancreas allograft and pancreas allograft function after three months, as an early relevant outcome parameter for pancreas transplantation.
Discussion: The EXPAND Study has been initiated to investigate the hypothesis that locally allocated extended criteria organs can be transplanted with similar results compared to the currently allowed standard ET organ allocation. If our study shows a favorable comparison to standard organ allocation criteria, the morbidity and mortality for patients waiting for transplantation could be reduced in the future.
Trial registered at: NCT01384006
Despite a high clinical need for the treatment of colorectal carcinoma (CRC) as the second leading cause of cancer-related deaths, targeted therapies are still limited. The multifunctional enzyme Transglutaminase 2 (TGM2), which harbors transamidation and GTPase activity, has been implicated in the development and progression of different types of human cancers. However, the mechanism and role of TGM2 in colorectal cancer are poorly understood. Here, we present TGM2 as a promising drug target.
In primary patient material of CRC patients, we detected an increased expression and enzymatic activity of TGM2 in colon cancer tissue in comparison to matched normal colon mucosa cells. The genetic ablation of TGM2 in CRC cell lines using shRNAs or CRISPR/Cas9 inhibited cell expansion and tumorsphere formation. In vivo, tumor initiation and growth were reduced upon genetic knockdown of TGM2 in xenotransplantations. TGM2 ablation led to the induction of Caspase-3-driven apoptosis in CRC cells. Functional rescue experiments with TGM2 variants revealed that the transamidation activity is critical for the pro-survival function of TGM2. Transcriptomic and protein–protein interaction analyses applying various methods including super-resolution and time-lapse microscopy showed that TGM2 directly binds to the tumor suppressor p53, leading to its inactivation and escape of apoptosis induction.
We demonstrate here that TGM2 is an essential survival factor in CRC, highlighting the therapeutic potential of TGM2 inhibitors in CRC patients with high TGM2 expression. The inactivation of p53 by TGM2 binding indicates a general anti-apoptotic function, which may be relevant in cancers beyond CRC.