Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- desiccation (2)
- Acinetobacter baumannii (1)
- Drought (1)
- Osmostress (1)
- Pathogen (1)
- Persistence (1)
- Virulence (1)
- enzyme activity (1)
- gene expression (1)
- mannitol (1)
Institute
Mannitol is the major compatible solute, next to glutamate, synthesized by the opportunistic human pathogen Acinetobacter baumannii under low water activities. The key enzyme for mannitol biosynthesis, MtlD, was identified. MtlD is highly similar to the bifunctional mannitol‐1‐phosphate dehydrogenase/phosphatase from Acinetobacter baylyi. After deletion of the mtlD gene from A. baumannii ATCC 19606T cells no longer accumulated mannitol and growth was completely impaired at high salt. Addition of glycine betaine restored growth, demonstrating that mannitol is an important compatible solute in the human pathogen. MtlD was heterologously produced and purified. Enzyme activity was strictly salt dependent. Highest stimulation was reached at 600 mmol/L NaCl. Addition of different sodium as well as potassium salts restored activity, with highest stimulations up to 41 U/mg protein by sodium glutamate. In contrast, an increase in osmolarity by addition of sugars did not restore activity. Regulation of mannitol synthesis was also assayed at the transcriptional level. Reporter gene assays revealed that expression of mtlD is strongly dependent on high osmolarity, not discriminating between different salts or sugars. The presence of glycine betaine or its precursor choline repressed promoter activation. These data indicate a dual regulation of mannitol production in A. baumannii, at the transcriptional and the enzymatic level, depending on high osmolarity.
The extraordinary desiccation resistance of the opportunistic human pathogen Acinetobacter baumannii is a key to its survival and spread in medical care units. The accumulation of compatible solute such as glutamate, mannitol and trehalose contributes to the desiccation resistance. Here, we have used osmolarity as a tool to study the response of cells to low water activities and studied the role of a potential inorganic osmolyte, K+, in osmostress response. Growth of A. baumannii was K+-dependent and the K+-dependence increased with the osmolarity of the medium. After an osmotic upshock, cells accumulated K+ and K+ accumulation increased with the salinity of the medium. K+ uptake was reduced in the presence of glycine betaine. The intracellular pools of compatible solutes were dependent on the K+ concentration: mannitol and glutamate concentrations increased with increasing K+ concentrations whereas trehalose was highest at low K+. After osmotic upshock, cells first accumulated K+ followed by synthesis of glutamate; later, mannitol and trehalose synthesis started, accompanied with a decrease of intracellular K+ and glutamate. These experiments demonstrate K+ uptake as a first response to osmostress in A. baumannii and demonstrate a hierarchy in the time-dependent accumulation of K+ and different organic solutes.
Acinetobacter baumannii is an opportunistic human pathogen that has become a global threat to healthcare institutions worldwide. The success of A. baumannii is based on the rise of multiple antibiotic resistances and its outstanding potential to persist in the human host and under conditions of low water activity in hospital environments. Combating low water activities involves osmoprotective measures such as uptake of compatible solutes and K+. To address the role of K+ uptake in the physiology of A. baumannii we have identified K+ transporter encoding genes in the genome of A. baumannii ATCC 19606. The corresponding genes (kup, trk, kdp) were deleted and the phenotype of the mutants was studied. The triple mutant was defective in K+ uptake which resulted in a pronounced growth defect at high osmolarities (300 mM NaCl). Additionally, mannitol and glutamate synthesis were strongly reduced in the mutant. To mimic host conditions and to study its role as an uropathogen, we performed growth studies with the K+ transporter deletion mutants in human urine. Both, the double (ΔkupΔtrk) and the triple mutant were significantly impaired in growth. This could be explained by the inability of ΔkupΔtrkΔkdp to metabolize various amino acids properly. Moreover, the reactive oxygen species resistance of the triple mutant was significantly reduced in comparison to the wild type, making it susceptible to one essential part of the innate immune response. Finally, the triple and the double mutant were strongly impaired in Galleria mellonella killing giving first insights in the importance of K+ uptake in virulence.
The viable but non-culturable (VBNC) state is a persistence strategy adopted by bacteria to withstand long-lasting periods of unfavorable conditions. VBNC cells evade classical detection methods and are therefore easily transmitted in the hospital causing relapsing infections. The opportunistic human pathogen Acinetobacter baumannii has become a major threat in health care institutions and the food industry due to multiple antibiotic resistances and its ability to quickly adapt to very different ecological niches. Here, we report an additional, novel survival strategy of A. baumannii. Upon prolonged incubation in high-salt media, cells became unculturable. However, LIVE/DEAD staining followed by flow cytometry, respiratory activity assays, and resuscitation experiments revealed that these cells were viable but non-culturable. VBNC cells underwent large morphological changes. Entry into the VBNC state was also induced by pH and temperature stress, as well as by desiccation and anaerobiosis. The VBNC state was found in several strains of A. baumannii. Genome-wide expression profiling revealed a plethora of genes differentially regulated upon entry into the VBNC state. In summary, this study presents unequivocal evidence for a dormancy state in A. baumannii that has important consequences for detection of this pathogen and recurrent outbreaks.