Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
Current atmospheric models do not include secondary organic aerosol (SOA) production from gas-phase reactions of polycyclic aromatic hydrocarbons (PAHs). Recent studies have shown that primary semivolatile emissions, previously assumed to be inert, undergo oxidation in the gas phase, leading to SOA formation. This opens the possibility that low-volatility gas-phase precursors are a potentially large source of SOA. In this work, SOA formation from gas-phase photooxidation of naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 1,2-dimethylnaphthalene (1,2-DMN) is studied in the Caltech dual 28-m3 chambers. Under high-NOx conditions and aerosol mass loadings between 10 and 40 microg m-3, the SOA yields (mass of SOA per mass of hydrocarbon reacted) ranged from 0.19 to 0.30 for naphthalene, 0.19 to 0.39 for 1-MN, 0.26 to 0.45 for 2-MN, and constant at 0.31 for 1,2-DMN. Under low-NOx conditions, the SOA yields were measured to be 0.73, 0.68, and 0.58, for naphthalene, 1-MN, and 2-MN, respectively. The SOA was observed to be semivolatile under high-NOx conditions and essentially nonvolatile under low-NOx conditions, owing to the higher fraction of ring-retaining products formed under low-NOx conditions. When applying these measured yields to estimate SOA formation from primary emissions of diesel engines and wood burning, PAHs are estimated to yield 3–5 times more SOA than light aromatic compounds. PAHs can also account for up to 54% of the total SOA from oxidation of diesel emissions, representing a potentially large source of urban SOA.
This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Extensive investigations of boreal fire plume evolution were undertaken during ARCTAS-B, where four distinct fire plumes that were intercepted by the aircraft over a range of down-wind distances (0.1 to 16 hr transport times) were studied in detail. Based on these analyses, there was no evidence for ozone production and a box model simulation of the data confirmed that net ozone production was slow (on average 1 ppbv h−1 in the first 3 h and much lower afterwards) due to limited NOx. Peroxyacetyl nitrate concentrations (PAN) increased with plume age and the box model estimated an average production rate of ~80 pptv h−1 in the first 3 h. Like ozone, there was also no evidence for net secondary inorganic or organic aerosol formation. There was no apparent increase in aerosol mass concentrations in the boreal fire plumes due to secondary organic aerosol (SOA) formation; however, there were indications of chemical processing of the organic aerosols. In addition to the detailed studies of boreal fire plume evolution, about 500 smoke plumes intercepted by the NASA DC-8 aircraft were segregated by fire source region. The normalized excess mixing ratios (i.e. ΔX/ΔCO) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen (NOx), ozone, PAN) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared.
This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper.
The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes.
Current atmospheric models do not include secondary organic aerosol (SOA) production from gas-phase reactions of polycyclic aromatic hydrocarbons (PAHs). Recent studies have shown that primary semivolatile emissions, previously assumed to be inert, undergo oxidation in the gas phase, leading to SOA formation. This opens the possibility that low-volatility gas-phase precursors are a potentially large source of SOA. In this work, SOA formation from gas-phase photooxidation of naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 1,2-dimethylnaphthalene (1,2-DMN) is studied in the Caltech dual 28-m3 chambers. Under high-NOx conditions and aerosol mass loadings between 10 and 40 μg m, the SOA yields (mass of SOA per mass of hydrocarbon reacted) ranged from 0.19 to 0.30 for naphthalene, 0.19 to 0.39 for 1-MN, 0.26 to 0.45 for 2-MN, and constant at 0.31 for 1,2-DMN. Under low-NOx conditions, the SOA yields were measured to be 0.73, 0.68, and 0.58, for naphthalene, 1-MN, and 2-MN, respectively. The SOA was observed to be semivolatile under high-NOx conditions and essentially nonvolatile under low-NOx conditions, owing to the higher fraction of ring-retaining products formed under low-NOx conditions. When applying these measured yields to estimate SOA formation from primary emissions of diesel engines and wood burning, PAHs are estimated to yield 3–5 times more SOA than light aromatic compounds. PAHs can also account for up to 54% of the total SOA from oxidation of diesel emissions, representing a potentially large source of urban SOA.
Calibration of TCCON column-averaged CO₂: the first aircraft campaign over European TCCON sites
(2011)
The Total Carbon Column Observing Network (TCCON) is a ground-based network of Fourier Transform Spectrometer (FTS) sites around the globe, where the column abundances of CO2, CH4, N2O, CO and O2 are measured. CO2 is constrained with a precision better than 0.25% (1-σ). To achieve a similarly high accuracy, calibration to World Meteorological Organization (WMO) standards is required. This paper introduces the first aircraft calibration campaign of five European TCCON sites and a mobile FTS instrument. A series of WMO standards in-situ profiles were obtained over European TCCON sites via aircraft and compared with retrievals of CO2 column amounts from the TCCON instruments. The results of the campaign show that the FTS measurements are consistently biased 1.1% ± 0.2% low with respect to WMO standards, in agreement with previous TCCON calibration campaigns. The standard a priori profile for the TCCON FTS retrievals is shown to not add a bias. The same calibration factor is generated using aircraft profiles as a priori and with the TCCON standard a priori. With a calibration to WMO standards, the highly precise TCCON CO2 measurements of total column concentrations provide a suitable database for the calibration and validation of nadir-viewing satellites
Calibration of TCCON column-averaged CO₂: the first aircraft campaign over European TCCON sites
(2011)
The Total Carbon Column Observing Network (TCCON) is a ground-based network of Fourier Transform Spectrometer (FTS) sites around the globe, where the column abundances of CO2, CH4, N2O, CO and O2 are measured. CO2 is constrained with a precision better than 0.25 %. To achieve a similarly high accuracy, calibration to World Meteorological Organization (WMO) standards is required. This paper introduces the first aircraft calibration campaign of five European TCCON sites and a mobile FTS instrument. A series of WMO standards in-situ profiles were obtained over European TCCON sites via aircraft and compared with retrievals of CO2 column amounts from the TCCON instruments. The results of the campaign show that the FTS measurements are consistently biased 1.0 % ± 0.2 % low with respect to WMO standards, in agreement with previous TCCON calibration campaigns. The standard a priori profile for the TCCON FTS retrievals is shown to not add a bias. The same calibration factor is generated using aircraft profiles as a priori and with the TCCON standard a priori. With a calibration to WMO standards, the highly precise TCCON CO2 measurements of total column concentrations provide a suitable database for the calibration and validation of nadir-viewing satellites.