Refine
Year of publication
Document Type
- Article (28)
Language
- English (28)
Has Fulltext
- yes (28)
Is part of the Bibliography
- no (28)
Keywords
- Solution-state NMR (4)
- NMR (3)
- Kinases (2)
- Molecular conformation (2)
- AEC syndrome (1)
- Antibiotic Resistance (1)
- Armadillo repeat protein (1)
- B-factor (1)
- BPTI (1)
- Bacillus (1)
Lantibiotics are peptide-derived antibiotics that inhibit the growth of Gram-positive bacteria via interactions with lipid II and lipid II-dependent pore formation in the bacterial membrane. Due to their general mode of action the Gram-positive producer strains need to express immunity proteins (LanI proteins) for protection against their own lantibiotics. Little is known about the immunity mechanism protecting the producer strain against its own lantibiotic on the molecular level. So far, no structures have been reported for any LanI protein. We solved the structure of SpaI, a LanI protein from the subtilin producing strain Bacillus subtilis ATCC 6633. SpaI is a 16.8-kDa lipoprotein that is attached to the outside of the cytoplasmic membrane via a covalent diacylglycerol anchor. SpaI together with the ABC transporter SpaFEG protects the B. subtilis membrane from subtilin insertion. The solution-NMR structure of a 15-kDa biologically active C-terminal fragment reveals a novel fold. We also demonstrate that the first 20 N-terminal amino acids not present in this C-terminal fragment are unstructured in solution and are required for interactions with lipid membranes. Additionally, growth tests reveal that these 20 N-terminal residues are important for the immunity mediated by SpaI but most likely are not part of a possible subtilin binding site. Our findings are the first step on the way of understanding the immunity mechanism of B. subtilis in particular and of other lantibiotic producing strains in general.
Protein aggregation of the p63 transcription factor underlies severe skin fragility in AEC syndrome
(2018)
The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the C-terminal domain of the p63 gene can cause ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility and severe, long-lasting skin erosions. Despite deep knowledge of p63 functions, little is known about mechanisms underlying disease pathology and possible treatments. Here, we show that multiple AEC-associated p63 mutations, but not those causative of other diseases, lead to thermodynamic protein destabilization, misfolding, and aggregation, similar to the known p53 gain-of-function mutants found in cancer. AEC mutant proteins exhibit impaired DNA binding and transcriptional activity, leading to dominant negative effects due to coaggregation with wild-type p63 and p73. Importantly, p63 aggregation occurs also in a conditional knock-in mouse model for the disorder, in which the misfolded p63 mutant protein leads to severe epidermal defects. Variants of p63 that abolish aggregation of the mutant proteins are able to rescue p63’s transcriptional function in reporter assays as well as in a human fibroblast-to-keratinocyte conversion assay. Our studies reveal that AEC syndrome is a protein aggregation disorder and opens avenues for therapeutic intervention.
Human Transformer2-beta (hTra2-beta) is an important member of the serine/arginine-rich protein family, and contains one RNA recognition motif (RRM). It controls the alternative splicing of several pre-mRNAs, including those of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Accordingly, the RRM of hTra2-beta specifically binds to two types of RNA sequences [the CAA and (GAA)2 sequences]. We determined the solution structure of the hTra2-beta RRM (spanning residues Asn110–Thr201), which not only has a canonical RRM fold, but also an unusual alignment of the aromatic amino acids on the beta-sheet surface. We then solved the complex structure of the hTra2-beta RRM with the (GAA)2 sequence, and found that the AGAA tetra-nucleotide was specifically recognized through hydrogen-bond formation with several amino acids on the N- and C-terminal extensions, as well as stacking interactions mediated by the unusually aligned aromatic rings on the beta-sheet surface. Further NMR experiments revealed that the hTra2-beta RRM recognizes the CAA sequence when it is integrated in the stem-loop structure. This study indicates that the hTra2-beta RRM recognizes two types of RNA sequences in different RNA binding modes.
RNA not only translates the genetic code into proteins, but also carries out important cellular functions. Understanding such functions requires knowledge of the structure and dynamics at atomic resolution. Almost half of the published RNA structures have been solved by nuclear magnetic resonance (NMR). However, as a result of severe resonance overlap and low proton density, high-resolution RNA structures are rarely obtained from nuclear Overhauser enhancement (NOE) data alone. Instead, additional semi-empirical restraints and labor-intensive techniques are required for structural averages, while there are only a few experimentally derived ensembles representing dynamics. Here we show that our exact NOE (eNOE) based structure determination protocol is able to define a 14-mer UUCG tetraloop structure at high resolution without other restraints. Additionally, we use eNOEs to calculate a two-state structure, which samples its conformational space. The protocol may open an avenue to obtain high-resolution structures of small RNA of unprecedented accuracy with moderate experimental efforts.
A key function of reversible protein phosphorylation is to regulate protein–protein interactions, many of which involve short linear motifs (3–12 amino acids). Motif‐based interactions are difficult to capture because of their often low‐to‐moderate affinities. Here, we describe phosphomimetic proteomic peptide‐phage display, a powerful method for simultaneously finding motif‐based interaction and pinpointing phosphorylation switches. We computationally designed an oligonucleotide library encoding human C‐terminal peptides containing known or predicted Ser/Thr phosphosites and phosphomimetic variants thereof. We incorporated these oligonucleotides into a phage library and screened the PDZ (PSD‐95/Dlg/ZO‐1) domains of Scribble and DLG1 for interactions potentially enabled or disabled by ligand phosphorylation. We identified known and novel binders and characterized selected interactions through microscale thermophoresis, isothermal titration calorimetry, and NMR. We uncover site‐specific phospho‐regulation of PDZ domain interactions, provide a structural framework for how PDZ domains accomplish phosphopeptide binding, and discuss ligand phosphorylation as a switching mechanism of PDZ domain interactions. The approach is readily scalable and can be used to explore the potential phospho‐regulation of motif‐based interactions on a large scale.
In every established species, protein-protein interactions have evolved such that they are fit for purpose. However, the molecular details of the evolution of new protein-protein interactions are poorly understood. We have used nuclear magnetic resonance spectroscopy to investigate the changes in structure and dynamics during the evolution of a protein-protein interaction involving the intrinsically disordered CREBBP (CREB-binding protein) interaction domain (CID) and nuclear coactivator binding domain (NCBD) from the transcriptional coregulators NCOA (nuclear receptor coactivator) and CREBBP/p300, respectively. The most ancient low-affinity “Cambrian-like” [540 to 600 million years (Ma) ago] CID/NCBD complex contained less secondary structure and was more dynamic than the complexes from an evolutionarily younger “Ordovician-Silurian” fish ancestor (ca. 440 Ma ago) and extant human. The most ancient Cambrian-like CID/NCBD complex lacked one helix and several interdomain interactions, resulting in a larger solvent-accessible surface area. Furthermore, the most ancient complex had a high degree of millisecond-to-microsecond dynamics distributed along the entire sequences of both CID and NCBD. These motions were reduced in the Ordovician-Silurian CID/NCBD complex and further redistributed in the extant human CID/NCBD complex. Isothermal calorimetry experiments show that complex formation is enthalpically favorable and that affinity is modulated by a largely unfavorable entropic contribution to binding. Our data demonstrate how changes in structure and motion conspire to shape affinity during the evolution of a protein-protein complex and provide direct evidence for the role of structural, dynamic, and frustrational plasticity in the evolution of interactions between intrinsically disordered proteins.
Although often depicted as rigid structures, proteins are highly dynamic systems, whose motions are essential to their functions. Despite this, it is difficult to investigate protein dynamics due to the rapid timescale at which they sample their conformational space, leading most NMR-determined structures to represent only an averaged snapshot of the dynamic picture. While NMR relaxation measurements can help to determine local dynamics, it is difficult to detect translational or concerted motion, and only recently have significant advances been made to make it possible to acquire a more holistic representation of the dynamics and structural landscapes of proteins. Here, we briefly revisit our most recent progress in the theory and use of exact nuclear Overhauser enhancements (eNOEs) for the calculation of structural ensembles that describe their conformational space. New developments are primarily targeted at increasing the number and improving the quality of extracted eNOE distance restraints, such that the multi-state structure calculation can be applied to proteins of higher molecular weights. We then review the implications of the exact NOE to the protein dynamics and function of cyclophilin A and the WW domain of Pin1, and finally discuss our current research and future directions.
Background: Simple peak-picking algorithms, such as those based on lineshape fitting, perform well when peaks are completely resolved in multidimensional NMR spectra, but often produce wrong intensities and frequencies for overlapping peak clusters. For example, NOESY-type spectra have considerable overlaps leading to significant peak-picking intensity errors, which can result in erroneous structural restraints. Precise frequencies are critical for unambiguous resonance assignments.
Results: To alleviate this problem, a more sophisticated peaks decomposition algorithm, based on non-negative matrix factorization (NMF), was developed. We produce peak shapes from Fourier-transformed NMR spectra. Apart from its main goal of deriving components from spectra and producing peak lists automatically, the NMF approach can also be applied if the positions of some peaks are known a priori, e.g. from consistently referenced spectral dimensions of other experiments.
Conclusions: Application of the NMF algorithm to a three-dimensional peak list of the 23 kDa bi-domain section of the RcsD protein (RcsD-ABL-HPt, residues 688-890) as well as to synthetic HSQC data shows that peaks can be picked accurately also in spectral regions with strong overlap.
NMR structure calculation using NOE-derived distance restraints requires a considerable number of assignments of both backbone and sidechains resonances, often difficult or impossible to get for large or complex proteins. Pseudocontact shifts (PCSs) also play a well-established role in NMR protein structure calculation, usually to augment existing structural, mostly NOE-derived, information. Existing refinement protocols using PCSs usually either require a sizeable number of sidechain assignments or are complemented by other experimental restraints. Here, we present an automated iterative procedure to perform backbone protein structure refinements requiring only a limited amount of backbone amide PCSs. Already known structural features from a starting homology model, in this case modules of repeat proteins, are framed into a scaffold that is subsequently refined by experimental PCSs. The method produces reliable indicators that can be monitored to judge about the performance. We applied it to a system in which sidechain assignments are hardly possible, designed Armadillo repeat proteins (dArmRPs), and we calculated the solution NMR structure of YM4A, a dArmRP containing four sequence-identical internal modules, obtaining high convergence to a single structure. We suggest that this approach is particularly useful when approximate folds are known from other techniques, such as X-ray crystallography, while avoiding inherent artefacts due to, for instance, crystal packing.
Background: The automation of objectively selecting amino acid residue ranges for structure superpositions is important for meaningful and consistent protein structure analyses. So far there is no widely-used standard for choosing these residue ranges for experimentally determined protein structures, where the manual selection of residue ranges or the use of suboptimal criteria remain commonplace. Results: We present an automated and objective method for finding amino acid residue ranges for the superposition and analysis of protein structures, in particular for structure bundles resulting from NMR structure calculations. The method is implemented in an algorithm, CYRANGE, that yields, without protein-specific parameter adjustment, appropriate residue ranges in most commonly occurring situations, including low-precision structure bundles, multi-domain proteins, symmetric multimers, and protein complexes. Residue ranges are chosen to comprise as many residues of a protein domain that increasing their number would lead to a steep rise in the RMSD value. Residue ranges are determined by first clustering residues into domains based on the distance variance matrix, and then refining for each domain the initial choice of residues by excluding residues one by one until the relative decrease of the RMSD value becomes insignificant. A penalty for the opening of gaps favours contiguous residue ranges in order to obtain a result that is as simple as possible, but not simpler. Results are given for a set of 37 proteins and compared with those of commonly used protein structure validation packages. We also provide residue ranges for 6351 NMR structures in the Protein Data Bank. Conclusions: The CYRANGE method is capable of automatically determining residue ranges for the superposition of protein structure bundles for a large variety of protein structures. The method correctly identifies ordered regions. Global structure superpositions based on the CYRANGE residue ranges allow a clear presentation of the structure, and unnecessary small gaps within the selected ranges are absent. In the majority of cases, the residue ranges from CYRANGE contain fewer gaps and cover considerably larger parts of the sequence than those from other methods without significantly increasing the RMSD values. CYRANGE thus provides an objective and automatic method for standardizing the choice of residue ranges for the superposition of protein structures. Additional files Additional file 1: Dependence of Q on the order parameter rank. The quantity Qi is plotted against the order parameter rank i for 9 different protein structure bundles. Additional file 2: Dependence of P on the clustering stage. The quantity Pi is plotted against the clustering stage i for 9 different protein structure bundles. Additional file 3: Dependence of CYRANGE results on the minimal cluster size parameter my. The sequence coverage (red) and RMSD (blue) of the residue ranges determined by CYRANGE were plotted as a function of my for 9 different protein structure bundles. The dotted vertical line indicates the default value, my = 8. Where CYRANGE found two domains, the RMSD values of the individual domains are shown in light and dark blue. Additional file 4: Dependence of CYRANGE results on the domain boundary extension parameter m. See Additional File 3 for details. Additional file 5: Dependence of CYRANGE results on the minimal gap width g. See Additional File 3 for details. Additional file 6: Dependence of CYRANGE results on the relative RMSD decrease parameter delta. See Additional File 3 for details. Additional file 7: Dependence of CYRANGE results on the absolute RMSD decrease parameter delta abs. See Additional File 3 for details. Additional file 8: Dependence of CYRANGE results on the gap penalty parameter gamma. See Additional File 3 for details. Additional file 9: Correlation between the sequence coverage from CYRANGE, FindCore and PSVS, and the GDT total score, GDT_TS. Each data point represents a protein shown in Figures 3 and 4. The coverage is the percentage of amino acid residues included in the residue ranges found by the different methods. The GDT_TS value is defined by GDT_TS = (P1 + P2 + P4 + P8)/4, where Pd is the fraction of residues that can be superimposed under a distance cutoff of d Å. Additional file 10: Correlation between the RMSD value for the residue ranges from CYRANGE, FindCore and PSVS, and the GDT total score, GDT_TS. Each data point represents one protein domain. See Additional File 9 for details.