Refine
Year of publication
Document Type
- Article (11)
- Conference Proceeding (2)
Language
- English (13)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- quantum biology (2)
- APP processing (1)
- Alzheimer (1)
- Backpropagating action potential (1)
- Biophysical models (1)
- Compartmental modeling (1)
- Complex Systems (1)
- Computational models (1)
- Computational neuroscience (1)
- Computational science (1)
Introduction: Neuronal death and subsequent denervation of target areas are hallmarks of many neurological disorders. Denervated neurons lose part of their dendritic tree, and are considered "atrophic", i.e. pathologically altered and damaged. The functional consequences of this phenomenon are poorly understood.
Results: Using computational modelling of 3D-reconstructed granule cells we show that denervation-induced dendritic atrophy also subserves homeostatic functions: By shortening their dendritic tree, granule cells compensate for the loss of inputs by a precise adjustment of excitability. As a consequence, surviving afferents are able to activate the cells, thereby allowing information to flow again through the denervated area. In addition, action potentials backpropagating from the soma to the synapses are enhanced specifically in reorganized portions of the dendritic arbor, resulting in their increased synaptic plasticity. These two observations generalize to any given dendritic tree undergoing structural changes.
Conclusions: Structural homeostatic plasticity, i.e. homeostatic dendritic remodeling, is operating in long-term denervated neurons to achieve functional homeostasis.
The nervous system probably cannot display macroscopic quantum (i.e. classically impossible) behaviours such as quantum entanglement, superposition or tunnelling (Koch and Hepp, Nature 440:611, 2006). However, in contrast to this quantum "mysticism" there is an alternative way in which quantum events might influence the brain activity. The nervous system is a nonlinear system with many feedback loops at every level of its structural hierarchy. A conventional wisdom is that in macroscopic objects the quantum fluctuations are self-averaging and thus not important. Nevertheless this intuition might be misleading in the case of nonlinear complex systems. Because of a high sensitivity to initial conditions, in chaotic systems the microscopic fluctuations may be amplified upward and thereby affect the system’s output. In this way stochastic quantum dynamics might sometimes alter the outcome of neuronal computations, not by generating classically impossible solutions, but by influencing the selection of many possible solutions (Satinover, Quantum Brain, Wiley & Sons, 2001). I am going to discuss recent theoretical proposals and experimental findings in quantum mechanics, complexity theory and computational neuroscience suggesting that biological evolution is able to take advantage of quantum-computational speed-up. I predict that the future research on quantum complex systems will provide us with novel interesting insights that might be relevant also for neurobiology and neurophilosophy.
Background: Amyloid precursor protein (APP) processing is central to Alzheimer’s disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη–α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo.
Methods: With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology.
Results: We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη–α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη–α in vivo.
Conclusions: These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD.
Modeling the effects of neuronal morphology on dendritic chloride diffusion and GABAergic inhibition
(2014)
Poster presentation at the Twenty Third Annual Computational Neuroscience Meeting: CNS*2014 Québec City, Canada. 26-31 July 2014.
Gamma-aminobutyric acid receptors (GABAARs) are ligand-gated chloride (Cl−) channels which mediate the majority of inhibitory neurotransmission in the CNS. Spatiotemporal changes of intracellular Cl− concentration alter the concentration gradient for Cl− across the neuronal membrane and thus affect the current flow through GABAARs and the efficacy of GABAergic inhibition. However, the impact of complex neuronal morphology on Cl− diffusion and the redistribution of intracellular Cl− is not well understood. Recently, computational models for Cl− diffusion and GABAAR-mediated inhibition in realistic neuronal morphologies became available [1-3]. Here we have used computational models of morphologically complex dendrites to test the effects of spines on Cl− diffusion. In all dendritic morphologies tested, spines slowed down longitudinal Cl− diffusion along dendrites and decreased the amount and spatial spread of synaptically evoked Cl− changes. Spine densities of 2-10 spines/µm decreased the longitudinal diffusion coefficient of Cl− to 80-30% of its value in smooth dendrites, respectively. These results suggest that spines are able to limit short-term ionic plasticity [4] at dendritic GABAergic synapses.
Long-term potentiation (LTP) and long-term depression (LTD) are widely accepted to be synaptic mechanisms involved in learning and memory. It remains uncertain, however, which particular activity rules are utilized by hippocampal neurons to induce LTP and LTD in behaving animals. Recent experiments in the dentate gyrus of freely moving rats revealed an unexpected pattern of LTP and LTD from high-frequency perforant path stimulation. While 400 Hz theta-burst stimulation (400-TBS) and 400 Hz delta-burst stimulation (400-DBS) elicited substantial LTP of the tetanized medial path input and, concurrently, LTD of the non-tetanized lateral path input, 100 Hz theta-burst stimulation (100-TBS, a normally efficient LTP protocol for in vitro preparations) produced only weak LTP and concurrent LTD. Here we show in a biophysically realistic compartmental granule cell model that this pattern of results can be accounted for by a voltage-based spike-timing-dependent plasticity (STDP) rule combined with a relatively fast Bienenstock-Cooper-Munro (BCM)-like homeostatic metaplasticity rule, all on a background of ongoing spontaneous activity in the input fibers. Our results suggest that, at least for dentate granule cells, the interplay of STDP-BCM plasticity rules and ongoing pre- and postsynaptic background activity determines not only the degree of input-specific LTP elicited by various plasticity-inducing protocols, but also the degree of associated LTD in neighboring non-tetanized inputs, as generated by the ongoing constitutive activity at these synapses.
Cl(-) plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl(-) is not well understood. The role of spines in Cl(-) diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl(-) changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl(-) dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl(-) diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl(-) extrusion altered Cl(-) diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl(-) diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl(-) diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed.
The hippocampal dentate gyrus plays a role in spatial learning and memory and is thought to encode differences between similar environments. The integrity of excitatory and inhibitory transmission and a fine balance between them is essential for efficient processing of information. Therefore, identification and functional characterization of crucial molecular players at excitatory and inhibitory inputs is critical for understanding the dentate gyrus function. In this minireview, we discuss recent studies unraveling molecular mechanisms of excitatory/inhibitory synaptic transmission, long-term synaptic plasticity, and dentate granule cell excitability in the hippocampus of live animals. We focus on the role of three major postsynaptic proteins localized at excitatory (neuroligin-1) and inhibitory synapses (neuroligin-2 and collybistin). In vivo recordings of field potentials have the advantage of characterizing the effects of the loss of these proteins on the input-output function of granule cells embedded in a network with intact connectivity. The lack of neuroligin-1 leads to deficient synaptic plasticity and reduced excitation but normal granule cell output, suggesting unaltered excitation-inhibition ratio. In contrast, the lack of neuroligin-2 and collybistin reduces inhibition resulting in a shift towards excitation of the dentate circuitry.
Compartmental models are the theoretical tool of choice for understanding single neuron computations. However, many models are incomplete, built ad hoc and require tuning for each novel condition rendering them of limited usability. Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies. We illustrate this for a novel, highly detailed active model of dentate granule cells (GCs) replicating a wide palette of experiments from various labs. By implementing known differences in ion channel composition and morphology, our model reproduces data from mouse or rat, mature or adult-born GCs as well as pharmacological interventions and epileptic conditions. This work sets a new benchmark for detailed compartmental modeling. T2N is suitable for creating robust models useful for large-scale networks that could lead to novel predictions. We discuss possible T2N application in degeneracy studies.
The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system’s behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics.
Modeling long-term neuronal dynamics may require running long-lasting simulations. Such simulations are computationally expensive, and therefore it is advantageous to use simplified models that sufficiently reproduce the real neuronal properties. Reducing the complexity of the neuronal dendritic tree is one option. Therefore, we have developed a new reduced-morphology model of the rat CA1 pyramidal cell which retains major dendritic branch classes. To validate our model with experimental data, we used HippoUnit, a recently established standardized test suite for CA1 pyramidal cell models. The HippoUnit allowed us to systematically evaluate the somatic and dendritic properties of the model and compare them to models publicly available in the ModelDB database. Our model reproduced (1) somatic spiking properties, (2) somatic depolarization block, (3) EPSP attenuation, (4) action potential backpropagation, and (5) synaptic integration at oblique dendrites of CA1 neurons. The overall performance of the model in these tests achieved higher biological accuracy compared to other tested models. We conclude that, due to its realistic biophysics and low morphological complexity, our model captures key physiological features of CA1 pyramidal neurons and shortens computational time, respectively. Thus, the validated reduced-morphology model can be used for computationally demanding simulations as a substitute for more complex models.