Refine
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Artemether-lumefantrine (1)
- Artemisinin-combination-therapy (1)
- Hydrothermal fluids (1)
- Iceland (1)
- Magma degassing (1)
- Magmatic volatiles (1)
- Malaria (1)
- Malariae (1)
- Non-falciparum (1)
- Ovale (1)
Institute
- Medizin (4)
- Geowissenschaften (1)
In the last decade, several sophisticated and accurate imaging methods such as positron emission tomography have been developed in order to evaluate malignant potential in enlarged mediastinal lymph nodes. This case illustrates an unusual presentation of sarcoidosis that mimicked lymphatic metastases of non small cell lung carcinoma. The reported high specificity and sensitivity of positron emission tomography-Computer Tomography regarding mediastinal staging could lead in same cases of false positives to a delaying of stage adapted therapy of non small cell lung carcinoma, showing that despite the recent advances of imaging techniques, such as positron emission tomography-computer tomography, several limitations of this imaging technique are still existing.
Background: The recommendation of artemisinin combination therapy (ACT) as first-line treatment for uncomplicated falciparum malaria is supported by a plethora of high quality clinical trials. However, their recommendation for the treatment of mixed-species malaria and the large-scale use for the treatment of non-falciparum malaria in endemic regions is based on anecdotal rather than systematic clinical evidence.
Methods: This study prospectively observed the efficacy of artemether-lumefantrine for the treatment of uncomplicated non-falciparum or mixed-species malaria in two routine district hospitals in the Central African country of Gabon.
Results: Forty patients suffering from uncomplicated Plasmodium malariae, Plasmodium ovale or mixed-species malaria (including Plasmodium falciparum) presenting at the hospital received artemether-lumefantrine treatment and were followed up. All evaluable patients (n = 38) showed an adequate clinical and parasitological response on Day 28 after oral treatment with artemether-lumefantrine (95% confidence interval: 0.91,1). All adverse events were of mild to moderate intensity and completely resolved by the end of study.
Conclusions: This first systematic assessment of artemether-lumefantrine treatment for P. malariae, P. ovale and mixed-species malaria demonstrated a high cure rate of 100% and a favourable tolerability profile, and thus lends support to the practice of treating non-falciparum or mixed-species malaria, or all cases of malaria without definite species differentiation, with artemether-lumefantrine in Gabon.
Trial Registration: ClinicalTrials.gov Identifier: NCT00725777
Objectives: Multidrug-resistant organisms (MDRO) are considered an emerging threat worldwide. Data covering the clinical impact of MDRO colonization in patients with solid malignancies, however, is widely missing. We sought to determine the impact of MDRO colonization in patients who have been diagnosed with Non-small cell lung cancer (NSCLC) who are at known high-risk for invasive infections.
Materials and methods: Patients who were screened for MDRO colonization within a 90-day period after NSCLC diagnosis of all stages were included in this single-center retrospective study.
Results: Two hundred and ninety-five patients were included of whom 24 patients (8.1%) were screened positive for MDRO colonization (MDROpos) at first diagnosis. Enterobacterales were by far the most frequent MDRO detected with a proportion of 79.2% (19/24). MDRO colonization was present across all disease stages and more present in patients with concomitant diabetes mellitus. Median overall survival was significantly inferior in the MDROpos study group with a median OS of 7.8 months (95% CI, 0.0–19.9 months) compared to a median OS of 23.9 months (95% CI, 17.6–30.1 months) in the MDROneg group in univariate (p = 0.036) and multivariate analysis (P = 0.02). Exploratory analyses suggest a higher rate of non-cancer-related-mortality in MDROpos patients compared to MDROneg patients (p = 0.002) with an increased rate of fatal infections in MDROpos patients (p = 0.0002).
Conclusions: MDRO colonization is an independent risk factor for inferior OS in patients diagnosed with NSCLC due to a higher rate of fatal infections. Empirical antibiotic treatment approaches should cover formerly detected MDR commensals in cases of (suspected) invasive infections.
Biventricular pacing has been suggested in end-stage heart failure. We present a 59-year-old patient undergoing second re-do CABG (coronary artery bypass graft) and carotid artery endarterectomy. Ejection fraction was 15%, QRS-width 175 ms. Following the carotid and CABG procedure, an implanted single-chamber ICD (implantable cardioverter defibrillator) was upgraded to permanent biventricular DDD pacing by implantation of one epicardial left ventricular and one epicardial atrial electrode. At follow-up two months postoperatively ejection fraction had significantly improved to 45%, the patient underwent stress test with adequate load and reported a good quality of life.
Highlights
• New fumarole and thermal water data for Askja and Kverkfjöll volcanoes, Iceland.
• Data compared to modelled compositions and fluxes of magmatic gas.
• Fumarole compositions compatible with origin of CO2 and S from degassing intrusions.
• Intrusive magmatic fluxes sufficient to sustain hydrothermal fluxes of CO2 and S in Iceland
• Magma degassing insignificant/minor source of H2O and Cl to Icelandic hydrothermal fluids
Abstract
Mantle volatiles are transported to Earth's crust and surface by basaltic volcanism. During subaerial eruptions, vast amounts of carbon, sulfur and halogens can be released to the atmosphere during a short time-interval, with impacts ranging in scale from the local environment to the global climate. By contrast, passive volatile release at the surface originating from magmatic intrusions is characterized by much lower flux, yet may outsize eruptive volatile quantities over long timescales. Volcanic hydrothermal systems (VHSs) act as conduits for such volatile release from degassing intrusions and can be used to gauge the contribution of intrusive magmatism to global volatile cycles. Here, we present new compositional and isotopic (δD and δ18O-H2O, 3He/4He, δ13C-CO2, Δ33S-δ34S-H2S and SO4) data for thermal waters and fumarole gases from the Askja and Kverkfjöll volcanoes in central Iceland. We use the data together with magma degassing modelling and mass balance calculations to constrain the sources of volatiles in VHSs and to assess the role of intrusive magmatism to the volcanic volatile emission budgets in Iceland.
The CO2/ΣS (10−30), 3He/4He (8.3–10.5 RA; 3He/4He relative to air), δ13C-CO2 (−4.1 to −0.2 ‰) and Δ33S-δ34S-H2S (−0.031 to 0.003 ‰ and −1.5 to +3.6‰) values in high-gas flux fumaroles (CO2 > 10 mmol/mol) are consistent with an intrusive magmatic origin for CO2 and S at Askja and Kverkfjöll. We demonstrate that deep (0.5–5 kbar, equivalent to ∼2–18 km crustal depth) decompression degassing of basaltic intrusions in Iceland results in CO2 and S fluxes of 330–5060 and 6–210 kt/yr, respectively, which is sufficient to account for the estimated CO2 flux of Icelandic VHSs (3365–6730 kt/yr), but not the VHS S flux (220–440 kt/yr). Secondary, crystallization-driven degassing from maturing intrusions and leaching of crustal rocks are suggested as additional sources of S. Only a minor proportion of the mantle flux of Cl is channeled via VHSs whereas the H2O flux remains poorly constrained, because magmatic signals in Icelandic VHSs are masked by a dominant shallow groundwater component of meteoric water origin. These results suggest that the bulk of the mantle CO2 and S flux to the atmosphere in Iceland is supplied by intrusive, not eruptive magmatism, and is largely vented via hydrothermal fields.