Refine
Document Type
- Conference Proceeding (2)
- Article (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
We discuss the present collective flow signals for the phase transition to quark-gluon plasma (QGP) and the collective flow as a barometer for the equation of state (EoS). A study of Mach shocks induced by fast partonic jets propagating through the QGP is given. We predict a significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies as compared to the case of jet propagation in a static medium. Results of a hydrodynamical study of jet energy loss are presented.
This work presents an effective model for strongly interacting matter and the QCD equation of state (EoS). The model includes both hadron and quark degrees of freedom and takes into account the transition of chiral symmetry restoration as well as the deconfinement phase transition. At low temperatures T and baryonic densities ρB a hadron resonance gas is described using a SU(3)-flavor sigma-omega model and a quark phase is introduced in analogy to PNJL models for higher T and ρB. In this way, the correct asymptotic degrees of freedom are used in a wide range of T and ρB. Here, results of this model concerning the chiral and deconfinement phase transitions and thermodynamic model properties are presented. Large hadron resonance multiplicities in the transition region emphasize the importance of heavy-mass resonance states in this region and their impact on the chiral transition behavior. The resulting phase diagram of QCD matter at small chemical potentials is in line with latest lattice QCD and thermal model results.
In this work the baryon number and strange susceptibility of second and fourth order are presented. The results at zero baryon-chemical potential are obtained using a well tested chiral effective model including all known hadron degrees of freedom and additionally implementing quarks and gluons in a PNJL-like approach. Quark and baryon number susceptibilities are sensitive to the fundamental degrees of freedom in the model and signal the shift from massive hadrons to light quarks at the deconfinement transition by a sharp rise at the critical temperature. Furthermore, all susceptibilities are found to be largely suppressed by repulsive vector field interactions of the particles. In the hadronic sector vector repulsion of baryon resonances restrains fluctuations to a large amount and in the quark sector above Tc even small vector field interactions of quarks quench all fluctuations unreasonably strong. For this reason, vector field interactions for quarks have to vanish in the deconfinement limit.