Refine
Document Type
- Article (11)
Language
- English (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- classical Hodgkin lymphoma (2)
- B-cell immunology (1)
- B-cell lymphoma (1)
- B-cell receptor (1)
- BATF3 (1)
- Cancer genomics (1)
- Lymphocytes (1)
- Lymphoid tissues (1)
- Oncology (1)
- T cell/histiocyte rich large B cell lymphoma (1)
Institute
TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma
(2009)
Proliferation and survival of Hodgkin and Reed/Sternberg (HRS) cells, the malignant cells of classical Hodgkin lymphoma (cHL), are dependent on constitutive activation of nuclear factor {kappa}B (NF-{kappa}B). NF-{kappa}B activation through various stimuli is negatively regulated by the zinc finger protein A20. To determine whether A20 contributes to the pathogenesis of cHL, we sequenced TNFAIP3, encoding A20, in HL cell lines and laser-microdissected HRS cells from cHL biopsies. We detected somatic mutations in 16 out of 36 cHLs (44%), including missense mutations in 2 out of 16 Epstein-Barr virus–positive (EBV+) cHLs and a missense mutation, nonsense mutations, and frameshift-causing insertions or deletions in 14 out of 20 EBV– cHLs. In most mutated cases, both TNFAIP3 alleles were inactivated, including frequent chromosomal deletions of TNFAIP3. Reconstitution of wild-type TNFAIP3 in A20-deficient cHL cell lines revealed a significant decrease in transcripts of selected NF-{kappa}B target genes and caused cytotoxicity. Extending the mutation analysis to primary mediastinal B cell lymphoma (PMBL), another lymphoma with constitutive NF-{kappa}B activity, revealed destructive mutations in 5 out of 14 PMBLs (36%). This report identifies TNFAIP3 (A20), a key regulator of NF-{kappa}B activity, as a novel tumor suppressor gene in cHL and PMBL. The significantly higher frequency of TNFAIP3 mutations in EBV– than EBV+ cHL suggests complementing functions of TNFAIP3 inactivation and EBV infection in cHL pathogenesis.
Background: Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required. Methodology/Principal Findings: Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression. Conclusions/Significance: We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes—DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1—that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play an important role in the development of different HNs.
The pathogenesis of nodular lymphocyte–predominant Hodgkin lymphoma (NLPHL) and its relationship to other lymphomas are largely unknown. This is partly because of the technical challenge of analyzing its rare neoplastic lymphocytic and histiocytic (L&H) cells, which are dispersed in an abundant nonneoplastic cellular microenvironment. We performed a genome-wide expression study of microdissected L&H lymphoma cells in comparison to normal and other malignant B cells that indicated a relationship of L&H cells to and/or that they originate from germinal center B cells at the transition to memory B cells. L&H cells show a surprisingly high similarity to the tumor cells of T cell–rich B cell lymphoma and classical Hodgkin lymphoma, a partial loss of their B cell phenotype, and deregulation of many apoptosis regulators and putative oncogenes. Importantly, L&H cells are characterized by constitutive nuclear factor {kappa}B activity and aberrant extracellular signal-regulated kinase signaling. Thus, these findings shed new light on the nature of L&H cells, reveal several novel pathogenetic mechanisms in NLPHL, and may help in differential diagnosis and lead to novel therapeutic strategies.
Anaplastic large cell lymphoma (ALCL) and classical Hodgkin lymphoma (cHL) are lymphomas that contain CD30-expressing tumor cells and have numerous pathological similarities. Whereas ALCL is usually diagnosed at an advanced stage, cHL more frequently presents with localized disease. The aim of the present study was to elucidate the mechanisms underlying the different clinical presentation of ALCL and cHL. Chemokine and chemokine receptor expression were similar in primary ALCL and cHL cases apart from the known overexpression of the chemokines CCL17 and CCL22 in the Hodgkin and Reed-Sternberg (HRS) cells of cHL. Consistent with the overexpression of these chemokines, primary cHL cases encountered a significantly denser T cell microenvironment than ALCL. Additionally to differences in the interaction with their microenvironment, cHL cell lines presented a lower and less efficient intrinsic cell motility than ALCL cell lines, as assessed by time-lapse microscopy in a collagen gel and transwell migration assays. We thus propose that the combination of impaired basal cell motility and differences in the interaction with the microenvironment hamper the dissemination of HRS cells in cHL when compared with the tumor cells of ALCL.
Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is an indolent lymphoma, but can transform into diffuse large B cell lymphoma (DLBCL), showing a more aggressive clinical behavior. Little is known about these cases on the molecular level. Therefore, the aim of the present study was to characterize DLBCL transformed from NLPHL (LP-DLBCL) by gene expression profiling (GEP). GEP revealed an inflammatory signature pinpointing to a specific host response. In a coculture model resembling this host response, DEV tumor cells showed an impaired growth behavior. Mechanisms involved in the reduced tumor cell proliferation included a downregulation of MYC and its target genes. Lack of MYC expression was also confirmed in 12/16 LP-DLBCL by immunohistochemistry. Furthermore, CD274/PD-L1 was upregulated in DEV tumor cells after coculture with T cells or monocytes and its expression was validated in 12/19 cases of LP-DLBCL. Thereby, our data provide new insights into the pathogenesis of LP-DLBCL and an explanation for the relatively low tumor cell content. Moreover, the findings suggest that treatment of these patients with immune checkpoint inhibitors may enhance an already ongoing host response in these patients.
The mechanisms involved in malignant transformation of mature B and T lymphocytes are still poorly understood. In a previous study, we compared gene expression profiles of the tumor cells of Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL) to their normal cellular counterparts and found the basic leucine zipper protein ATF-like 3 (BATF3) to be significantly upregulated in the tumor cells of both entities. To assess the oncogenic potential of BATF3 in lymphomagenesis and to dissect the molecular interactions of BATF3 in lymphoma cells, we retrovirally transduced murine mature T and B cells with a BATF3-encoding viral vector and transplanted each population into Rag1-deficient recipients. Intriguingly, BATF3-expressing B lymphocytes readily induced B-cell lymphomas after characteristic latencies, whereas T-cell transplanted animals remained healthy throughout the observation time. Further analyses revealed a germinal center B-cell-like phenotype of most BATF3-initiated lymphomas. In a multiple myeloma cell line, BATF3 inhibited BLIMP1 expression, potentially illuminating an oncogenic action of BATF3 in B-cell lymphomagenesis. In conclusion, BATF3 overexpression induces malignant transformation of mature B cells and might serve as a potential target in B-cell lymphoma treatment.
Classical Hodgkin lymphoma (cHL) is one of the most common malignant lymphomas in Western Europe. The nodular sclerosing subtype of cHL (NS cHL) is characterized by a proliferation of fibroblasts in the tumor microenvironment, leading to fibrotic bands surrounding the lymphoma infiltrate. Several studies have described a crosstalk between the tumour cells of cHL, the Hodgkin- and Reed-Sternberg (HRS) cells, and cancer-associated fibroblasts. However, to date a deep molecular characterization of these fibroblasts is lacking. Thus, the aim of the present study is a comprehensive characterization of these fibroblasts. Gene expression profiling and methylation profiles of fibroblasts isolated from primary lymph node suspensions revealed persistent differences between fibroblasts obtained from NS cHL and lymphadenitis. NS cHL derived fibroblasts exhibit a myofibroblastic phenotype characterized by myocardin (MYOCD) expression. Moreover, TIMP3, an inhibitor of matrix metalloproteinases, was strongly upregulated in NS cHL fibroblasts, likely contributing to the accumulation of collagen in sclerotic bands of NS cHL. As previously shown for other types of cancer-associated fibroblasts, treatment by luteolin could reverse this fibroblast phenotype and decrease TIMP3 secretion. NS cHL fibroblasts showed enhanced proliferation when they were exposed to soluble factors released from HRS cells. For HRS cells, soluble factors from fibroblasts were not sufficient to protect them from Brentuximab-Vedotin induced cell death. However, HRS cells adherent to fibroblasts were protected from Brentuximab-Vedotin induced injury. In summary, we confirm the importance of fibroblasts for HRS cell survival and identify TIMP3 which probably contributes as a major factor to the typical fibrosis observed in NS cHL.
Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing.
In contrast to the commonly indolent clinical behavior of nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), T cell/histiocyte rich large B cell lymphoma (THRLBCL) is frequently diagnosed in advanced clinical stages and has a poor prognosis. Besides the different clinical presentations of these lymphoma entities, there are variants of NLPHL with considerable histopathologic overlap compared to THRLBCL. Especially THRLBCL-like NLPHL, a diffuse form of NLPHL, often presents a histopathologic pattern similar to THRLBCL, suggesting a close relationship between both lymphoma entities. To corroborate this hypothesis, we performed gene expression profiling of microdissected tumor cells of NLPHL, THRLBCL-like NLPHL and THRLBCL. In unsupervised analyses, the lymphomas did not cluster according to their entity. Moreover, even in supervised analyses, very few consistently differentially expressed transcripts were found, and for these genes the extent of differential expression was only moderate. Hence, there are no clear and consistent differences in the gene expression of the tumor cells of NLPHL, THRLBCL-like NLPHL and THRLBCL. Based on the gene expression studies, we identified BAT3/BAG6, HIGD1A, and FAT10/UBD as immunohistochemical markers expressed in the tumor cells of all three lymphomas. Characterization of the tumor microenvironment for infiltrating T cells and histiocytes revealed significant differences in the cellular composition between typical NLPHL and THRLBCL cases. However, THRLBCL-like NLPHL presented a histopathologic pattern more related to THRLBCL than NLPHL. In conclusion, NLPHL and THRLBCL may represent a spectrum of the same disease. The different clinical behavior of these lymphomas may be strongly influenced by differences in the lymphoma microenvironment, possibly related to the immune status of the patient at the timepoint of diagnosis.
The membrane bound NADPH oxidase involved in the synthesis of reactive oxygen species (ROS) is a multi-protein enzyme encoded by CYBA, CYBB, NCF1, NCF2 and NCF4 genes. Growing evidence suggests a role of ROS in the modulation of signaling pathways of non-phagocytic cells, including differentiation and proliferation of B-cell progenitors. Transcriptional downregulation of the CYBB gene has been previously reported in cell lines of the B-cell derived classical Hodgkin lymphoma (cHL). Thus, we explored functional consequences of CYBB downregulation on the NADPH complex. Using flow cytometry to detect and quantify superoxide anion synthesis in cHL cell lines we identified recurrent loss of superoxide anion production in all stimulated cHL cell lines in contrast to stimulated non-Hodgkin lymphoma cell lines. As CYBB loss proved to exert a deleterious effect on the NADPH oxidase complex in cHL cell lines, we analyzed the CYBB locus in Hodgkin and Reed-Sternberg (HRS) cells of primary cHL biopsies by in situ hybridisation and identified recurrent deletions of the gene in 8/18 cases. Immunohistochemical analysis to 14 of these cases revealed a complete lack of detectable CYBB protein expression in all HRS cells in all cases studied. Moreover, by microarray profiling of cHL cell lines we identified additional alterations of NADPH oxidase genes including CYBA copy number loss in 3/7 cell lines and a significant downregulation of the NCF1 transcription (p=0.006) compared to normal B-cell subsets. Besides, NCF1 protein was significantly downregulated (p<0.005) in cHL compared to other lymphoma cell lines. Together this findings show recurrent alterations of the NADPH oxidase encoding genes that result in functional inactivation of the enzyme and reduced production of superoxide anion in cHL.