Refine
Document Type
- Article (7)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
Institute
National greenhouse gas inventories (GHGIs) are submitted annually to the United Nations Framework Convention on Climate Change (UNFCCC). They are estimated in compliance with Intergovernmental Panel on Climate Change (IPCC) methodological guidance using activity data, emission factors and facility-level measurements. For some sources, the outputs from these calculations are very uncertain. Inverse modelling techniques that use high-quality, long-term measurements of atmospheric gases have been developed to provide independent verification of national GHGIs. This is considered good practice by the IPCC as it helps national inventory compilers to verify reported emissions and to reduce emission uncertainty. Emission estimates from the InTEM (Inversion Technique for Emission Modelling) model are presented for the UK for the hydrofluorocarbons (HFCs) reported to the UNFCCC (HFC-125, HFC-134a, HFC-143a, HFC-152a, HFC-23, HFC-32, HFC-227ea, HFC-245fa, HFC-43-10mee and HFC-365mfc). These HFCs have high global warming potentials (GWPs), and the global background mole fractions of all but two are increasing, thus highlighting their relevance to the climate and a need for increasing the accuracy of emission estimation for regulatory purposes. This study presents evidence that the long-term annual increase in growth of HFC-134a has stopped and is now decreasing. For HFC-32 there is an early indication, its rapid global growth period has ended, and there is evidence that the annual increase in global growth for HFC-125 has slowed from 2018. The inverse modelling results indicate that the UK implementation of European Union regulation of HFC emissions has been successful in initiating a decline in UK emissions from 2018. Comparison of the total InTEM UK HFC emissions in 2020 with the average from 2009–2012 shows a drop of 35 %, indicating progress toward the target of a 79 % decrease in sales by 2030. The total InTEM HFC emission estimates (2008–2018) are on average 73 (62–83) % of, or 4.3 (2.7–5.9) Tg CO2-eq yr−1 lower than, the total HFC emission estimates from the UK GHGI. There are also significant discrepancies between the two estimates for the individual HFCs.
National Greenhouse Gas Inventories (GHGI) are submitted annually to the United Nations Framework Convention on Climate Change (UNFCCC). They are estimated in compliance with Intergovernmental Panel on Climate Change (IPCC) methodological guidance using activity data, emission factors and facility-level measurements. For some sources, the outputs from these calculations are very uncertain. Inverse modelling techniques that use high-quality, long-term measurements of atmospheric gases have been developed to provide independent verification of national GHGI. This is considered good practice by the IPCC as it helps national inventory compilers to verify reported emissions and to reduce emission uncertainty. Emission estimates from the InTEM (Inversion Technique for Emissions Modelling) model are presented for the UK for the hydrofluorocarbons (HFCs) reported to the UNFCCC (HFC-125, HFC-134a, HFC-143a, HFC-152a, HFC-23, HFC-32, HFC-227ea, HFC-245fa, HFC-43-10mee and HFC-365mfc). These HFCs have high Global Warming Potentials (GWPs) and the global background mole fractions of all but two are increasing, thus highlighting their relevance to the climate and a need for increasing the accuracy of emission estimation for regulatory purposes. This study presents evidence that the long-term annual increase in growth of HFC-134a has stopped and is now decreasing. For HFC-32 there is an early indication its rapid global growth period has ended, and there is evidence that the annual increase in global growth for HFC-125 has slowed from 2018. The inverse modelling results indicate that the UK implementation of European Union regulation of HFC emissions has been successful in initiating a decline in UK emissions in the since 2018. Comparison of the total InTEM UK HFC emissions in 2020 with the average from 2009–2012 shows a drop of 35%, indicating progress toward the target of a 79% decrease in sales by 2030. The total InTEM HFC emission estimates (2008–2018) are on average 73 (62–83)% of, or 4.3 (2.7–5.9) Tg CO2-eq yr−1 lower than, the total HFC emission estimates from the UK GHGI inventory. There are also significant discrepancies between the two estimates for the individual HFCs.
Emissions of the potent greenhouse gas perfluorocyclobutane (c-C4F8, PFC-318, octafluorocyclobutane) into the global atmosphere inferred from atmospheric measurements have been increasing sharply since the early 2000s. We find that these inferred emissions are highly correlated with the production of hydrochlorofluorocarbon-22 (HCFC-22, CHClF2) for feedstock (FS) uses, because almost all HCFC-22 FS is pyrolyzed to produce (poly)tetrafluoroethylene ((P)TFE) and hexafluoropropylene (HFP), a process in which c-C4F8 is a known by-product, causing a significant fraction of global c-C4F8 emissions. We find a global emission factor of ∼0.003 kg c-C4F8 per kilogram of HCFC-22 FS pyrolyzed. Mitigation of these c-C4F8 emissions, e.g., through process optimization, abatement, or different manufacturing processes, such as refined methods of electrochemical fluorination and waste recycling, could reduce the climate impact of this industry. While it has been shown that c-C4F8 emissions from developing countries dominate global emissions, more atmospheric measurements and/or detailed process statistics are needed to quantify c-C4F8 emissions at country to facility levels.
The International Halocarbons in Air Comparison Experiment (IHALACE) was conducted to document relationships between calibration scales among various laboratories that measure atmospheric greenhouse and ozone depleting gases. Six stainless steel cylinders containing natural and modified natural air samples were circulated among 19 laboratories. Results from this experiment reveal relatively good agreement among commonly used calibration scales for a number of trace gases present in the unpolluted atmosphere at pmol mol−1 (parts per trillion) levels, such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). Some scale relationships were found to be consistent with those derived from bi-lateral experiments or from analysis of atmospheric data, while others revealed discrepancies. The transfer of calibration scales among laboratories was found to be problematic in many cases, meaning that measurements tied to a common scale may not, in fact, be compatible. These results reveal substantial improvements in calibration over previous comparisons. However there is room for improvement in communication and coordination of calibration activities with respect to the measurement of halogenated and related trace gases.
We report on HCFC-22 data acquired by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) in reduced spectral resolution nominal mode in the period from January 2005 to April 2012 from version 5.02 level-1b spectral data and covering an altitude range from the upper troposphere (above cloud top altitude) to about 50 km. The profile retrieval was performed by constrained nonlinear least squares fitting of measured limb spectral radiances to modelled spectra. The spectral v4-band at 816.5 ± 13 cm-1 was used for the retrieval. A Tikhonov-type smoothing constraint was applied to stabilise the retrieval. In the lower stratosphere, we find a global volume mixing ratio of HCFC-22 of about 185 pptv in January 2005. The linear growth rate in the lower latitudes lower stratosphere was about 6 to 7 pptv yr-1 in the period 2005–2012. The obtained profiles were compared with ACE-FTS satellite data v3.5, as well as with MkIV balloon profiles and in situ cryosampler balloon measurements. Between 13 and 22 km, average agreement within -3 to +5 pptv (MIPAS–ACE) with ACE-FTS v3.5 pro files is demonstrated. Agreement with MkIV solar occultation balloon-borne measurements is within 10–20 pptv below 30 km and worse above, while in situ cryosampler balloon measurements are systematically lower over their full altitude range by 15– 50 pptv below 24 km and less than 10 pptv above 28 km. Obtained MIPAS HCFC-22 time series below 10 km altitude are shown to agree mostly well to corresponding time series of near-surface abundances from NOAA/ESRL and AGAGE networks, although a more pronounced seasonal cycle is obvious in the satellite data, probably due to tropopause altitude fluctuations and subsidence of polar winter stratospheric air into the troposphere. A parametric model consisting of constant, linear, quasi-biennial oscillation (QBO) and several sine and cosine terms with different periods has been fitted to the temporal variation of stratospheric HCFC-22 for all 10° latitude/1 to 2 km altitude bins. The relative linear variation was always positive, with relative increases of 40–70%decade-1 in the tropics and global lower stratosphere, and up to 120%decade-1 in the upper stratosphere of the northern polar region and the southern extratropical hemisphere. In the middle stratosphere between 20 and 30 km, the observed trend is not consistent with the age of stratospheric air-corrected trend at ground, but stronger positive at the Southern Hemisphere and less strong increasing in the Northern Hemisphere, hinting towards changes in the stratospheric circulation over the observation period.
We report on HCFC-22 data acquired by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) in the reduced spectral resolution nominal observation mode. The data cover the period from January 2005 to April 2012 and the altitude range from the upper troposphere (above cloud top altitude) to about 50 km. The profile retrieval was performed by constrained nonlinear least squares fitting of modelled spectra to the measured limb spectral radiances. The spectral ν4-band at 816.5 ± 13 cm−1 was used for the retrieval. A Tikhonov-type smoothing constraint was applied to stabilise the retrieval. In the lower stratosphere, we find a global volume mixing ratio of HCFC-22 of about 185 pptv in January 2005. The rate of linear growth in the lower latitudes lower stratosphere was about 6 to 7 pptv year−1 in the period 2005–2012. The profiles obtained were compared with ACE-FTS satellite data v3.5, as well as with MkIV balloon profiles and cryosampler balloon measurements. Between 13 and 22 km, average agreement within −3 to +5 pptv (MIPAS – ACE) with ACE-FTS v3.5 profiles is demonstrated. Agreement with MkIV solar occultation balloon-borne measurements is within 10–20 pptv below 30 km and worse above, while in situ cryosampler balloon measurements are systematically lower over their full altitude range by 15–50 pptv below 24 km and less than 10 pptv above 28 km. MIPAS HCFC-22 time series below 10 km altitude are shown to agree mostly well to corresponding time series of near-surface abundances from the NOAA/ESRL and AGAGE networks, although a more pronounced seasonal cycle is obvious in the satellite data. This is attributed to tropopause altitude fluctuations and subsidence of polar winter stratospheric air into the troposphere. A parametric model consisting of constant, linear, quasi-biennial oscillation (QBO) and several sine and cosine terms with different periods has been fitted to the temporal variation of stratospheric HCFC-22 for all 10°-latitude/1-to-2-km-altitude bins. The relative linear variation was always positive, with relative increases of 40–70 % decade−1 in the tropics and global lower stratosphere, and up to 120 % decade−1 in the upper stratosphere of the northern polar region and the southern extratropical hemisphere. Asian HCFC-22 emissions have become the major source of global upper tropospheric HCFC-22. In the upper troposphere, monsoon air, rich in HCFC-22, is instantaneously mixed into the tropics. In the middle stratosphere, between 20 and 30 km, the observed trend is inconsistent with the trend at the surface (corrected for the age of stratospheric air), hinting at circulation changes. There exists a stronger positive trend in HCFC-22 in the Southern Hemisphere and a more muted positive trend in the Northern Hemisphere, implying a potential change in the stratospheric circulation over the observation period.
Under the Kigali Amendment to the Montreal Protocol, new controls are being implemented to reduce emissions of HFC-23 (CHF3), a by-product during the manufacture of HCFC-22 (CHClF2). Starting in 2015, China and India, who dominate global HCFC-22 production (75% in 2017), set out ambitious programs to reduce HFC-23 emissions. Here, we estimate that these measures should have seen global emissions drop by 87% between 2014 and 2017. Instead, atmospheric observations show that emissions have increased and in 2018 were higher than at any point in history (15.9 ± 0.9 Gg yr−1). Given the magnitude of the discrepancy between expected and observation-inferred emissions, it is likely that the reported reductions have not fully materialized or there may be substantial unreported production of HCFC-22, resulting in unaccounted-for HFC-23 by-product emissions. The difference between reported and observation-inferred estimates suggests that an additional ~309 Tg CO2-equivalent emissions were added to the atmosphere between 2015 and 2017.