Refine
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Institute
The isotopic composition of methane in the stratosphere : high-altitude balloon sample measurements
(2011)
The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δC and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples) published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C=−14‰ and δD= +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs) derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. Temporal isotope trends can also be determined in the stratosphere and compare reasonably well with the tropospheric trends. The effects of chemical and dynamical processes on the isotopic composition of CH4 in the stratosphere are discussed in detail. Different ways to interpret the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D)) and Cl, respectively), and their limitations, are investigated. The classical approach of using global mean KIE values can be strongly biased when profiles with different minimum mixing ratios are compared. Approaches for more local KIE investigations are suggested. It is shown that any approach for a formal sink partitioning from the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Attempts can be made to correct for the lower stratospheric sink bias, but full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.
The isotopic composition of methane in the stratosphere : high-altitude balloon sample measurements
(2011)
The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples) published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs) derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D) and Cl). It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.
A comprehensive set of stratospheric balloon and aircraft samples was analyzed for the position-dependent isotopic composition of nitrous oxide (N2O). Results for a total of 220 samples from between 1987 and 2003 are presented, nearly tripling the number of mass-spectrometric N2O isotope measurements in the stratosphere published to date. Cryogenic balloon samples were obtained at polar (Kiruna/Sweden, 68° N), mid-latitude (southern France, 44° N) and tropical sites (Hyderabad/India, 18° N). Aircraft samples were collected with a newly-developed whole air sampler on board of the high-altitude aircraft M55 Geophysica during the EUPLEX 2003 campaign. For mixing ratios above 200 nmol mol−1, relative isotope enrichments (δ values) and mixing ratios display a compact relationship, which is nearly independent of latitude and season and which can be explained equally well by Rayleigh fractionation or mixing. However, for mixing ratios below 200 nmol mol−1 this compact relationship gives way to meridional, seasonal and interannual variations. A comparison to a previously published mid-latitude balloon profile even shows large zonal variations, justifying the use of three-dimensional (3-D) models for further data interpretation.
In general, the magnitude of the apparent fractionation constants (i.e., apparent isotope effects) increases continuously with altitude and decreases from the equator to the North Pole. Only the latter observation can be understood qualitatively by the interplay between the time-scales of N2O photochemistry and transport in a Rayleigh fractionation framework. Deviations from Rayleigh fractionation behavior also occur where polar vortex air mixes with nearly N2O-free upper stratospheric/mesospheric air (e.g., during the boreal winters of 2003 and possibly 1992). Aircraft observations in the polar vortex at mixing ratios below 200 nmol mol−1 deviate from isotope variations expected for both Rayleigh fractionation and two-end-member mixing, but could be explained by continuous weak mixing between intravortex and extravortex air (Plumb et al., 2000). However, it appears that none of the simple approaches described here can capture all features of the stratospheric N2O isotope distribution, again justifying the use of 3-D models. Finally, correlations between 18O/16O and average 15N/14N isotope ratios or between the position-dependent 15N/14N isotope ratios show that photo-oxidation makes a large contribution to the total N2O sink in the lower stratosphere (possibly up to 100% for N2O mixing ratios above 300 nmol mol−1). Towards higher altitudes, the temperature dependence of these isotope correlations becomes visible in the stratospheric observations.
A comprehensive set of stratospheric balloon and aircraft samples was analyzed for the position-dependent isotopic composition of nitrous oxide (N2O). Results for a total of 220 samples from between 1987 and 2003 are presented, nearly tripling the number of mass-spectrometric N2O isotope measurements in the stratosphere published to date. Cryogenic balloon samples were obtained at polar (Kiruna/Sweden, 68° N), mid-latitude (southern France, 44° N) and tropical sites (Hyderabad/India, 18° N). Aircraft samples were collected with a newly-developed whole air sampler on board of the high-altitude aircraft M55 Geophysica during the EUPLEX 2003 campaign. All samples were analyzed by laboratory mass spectrometry for their 18O/16O and position-dependent 15N/14N isotope ratios with very high precision (standard deviation about 0.15 per mil for 18O/16O and average 15N/14N ratios, about 0.5 per mil for 15NNO/14NNO and N15NO/N14NO ratios). For mixing ratios above 200 nmol mol−1, relative isotope enrichments (δ values) and mixing ratios display a compact relationship, which is nearly independent of latitude and season and which can be explained equally well by Rayleigh fractionation or mixing. However, for mixing ratios below 200 nmol mol−1 this compact relationship gives way to meridional, seasonal and interannual variations. A comparison to a previously published mid-latitude balloon profile even shows large zonal variations, justifying the use of three-dimensional models for further data interpretation.
In general, the magnitude of the apparent fractionation constants (apparent isotope effects) increases continuously with altitude and decreases from the equator to the North pole, which can be qualitatively understood by the interplay between the time-scales of N2O photochemistry and transport. Deviations from this behavior occur where polar vortex air mixes with nearly N2O-free upper stratospheric/mesospheric air (e.g., during the boreal winter of 2003 and possibly 1992). Aircraft observations in the polar vortex at mixing ratios below 200 nmol mol−1 deviate from isotope variations expected for both Rayleigh fractionation and end-member mixing, but could be explained by continuous weak mixing between intravortex and extravortex air (Plumb et al., 2000). Finally, correlations between 18O/16O and average 15N/14N isotope ratios or between the position-dependent 15N/14N isotope ratios show that photo-oxidation makes a large contribution to the total N2O sink in the lower stratosphere (up to 100%). Towards higher altitudes, the temperature dependence of these isotope correlations becomes visible in the stratospheric observations.