Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
- Medizin (3)
Antisynthetase syndrome (ASSD) is a rare clinical condition that is characterized by the occurrence of a classic clinical triad, encompassing myositis, arthritis, and interstitial lung disease (ILD), along with specific autoantibodies that are addressed to different aminoacyl tRNA synthetases (ARS). Until now, it has been unknown whether the presence of a different ARS might affect the clinical presentation, evolution, and outcome of ASSD. In this study, we retrospectively recorded the time of onset, characteristics, clustering of triad findings, and survival of 828 ASSD patients (593 anti-Jo1, 95 anti-PL7, 84 anti-PL12, 38 anti-EJ, and 18 anti-OJ), referring to AENEAS (American and European NEtwork of Antisynthetase Syndrome) collaborative group’s cohort. Comparisons were performed first between all ARS cases and then, in the case of significance, while using anti-Jo1 positive patients as the reference group. The characteristics of triad findings were similar and the onset mainly began with a single triad finding in all groups despite some differences in overall prevalence. The “ex-novo” occurrence of triad findings was only reduced in the anti-PL12-positive cohort, however, it occurred in a clinically relevant percentage of patients (30%). Moreover, survival was not influenced by the underlying anti-aminoacyl tRNA synthetase antibodies’ positivity, which confirmed that antisynthetase syndrome is a heterogeneous condition and that antibody specificity only partially influences the clinical presentation and evolution of this condition.
Background: Methotrexate (MTX) remains the anchor drug in rheumatoid arthritis (RA) treatment, but is poorly tolerated or contraindicated in some patients. There is a wealth of data supporting the use of abatacept in combination with MTX, but data on alternative conventional synthetic disease-modifying antirheumatic drug (csDMARD) combinations with abatacept are scarce.
Methods: In this post-hoc exploratory analysis, efficacy and safety data were extracted from abatacept RA studies in which combination with csDMARDs other than MTX was permitted: three interventional trials (ATTAIN, ASSURE, and ARRIVE) and one real-world study (ACTION). Patients with moderate-to-severe RA received abatacept in combination with MTX, hydroxychloroquine, sulfasalazine, azathioprine, or leflunomide for 6 months to 2 years according to the study design. Change from baseline in physical function (Health Assessment Questionnaire—Disability Index (HAQ-DI); all studies) and 28-joint Disease Activity Score (C-reactive protein) (DAS28 (CRP); ATTAIN, ARRIVE, and ACTION), American College of Rheumatology response rates (ATTAIN), and safety were assessed for individual and pooled csDMARD combinations for each trial. A meta-analysis was also performed on pooled data for HAQ-DI and DAS28 (CRP) across interventional trials.
Results: Across all four studies, 731 patients received abatacept plus one non-MTX csDMARD (hydroxychloroquine n = 152; sulfasalazine n = 123; azathioprine n = 59; and leflunomide n = 397) and 2382 patients received abatacept plus MTX. Mean changes from baseline in HAQ-DI scores for abatacept plus MTX (all csDMARDs pooled) vs abatacept plus a non-MTX csDMARD were –0.54 vs –0.44 (ATTAIN), –0.43 vs –0.43 (ASSURE), and –0.39 vs –0.36 (ARRIVE). Mean changes from baseline in DAS28 (CRP) and ACR response rates were also similar with abatacept plus MTX or non-MTX csDMARDs. Data for individual non-MTX csDMARDs (pooled across studies) and real-world data were consistent with these findings. Rates of treatment-related adverse events and serious adverse events, respectively, for abatacept plus one non-MTX csDMARD vs abatacept plus MTX were 35.7% vs 41.7% and 2.4% vs 2.3% (ATTAIN), 58.0% vs 55.9% and 4.2% vs 1.7% (ASSURE), and 38.1% vs 44.3% and 0.6% vs 2.9% (ARRIVE).
Conclusions: Abatacept in combination with non-MTX csDMARDs is clinically effective and well tolerated in patients with moderate-to-severe RA, providing similar benefits to those seen with abatacept plus MTX.
Antileukoproteinase (ALP) is a physiological inhibitor of granulocytic serine proteases that has been shown to have anti-inflammatory properties in addition to its antiproteolytic activity. On the basis of its potential to block anti-collagen type II (CII) antibody-induced arthritis (CAIA) and to suppress the conformational activation of β2-integrins in leukocytes, the present study was undertaken to investigate its interference with leukocyte adherence to cytokine-activated endothelium. The potential of recombinant ALP to block the interactions of leukocytes with the endothelial lining was concomitantly investigated in vitro and in vivo. Thus, intravital fluorescence microscopic imaging of leukocyte rolling and firm adhesion to postcapillary venules were performed in the knee joints of DBA1/J mice after intravenous injection of anti-CII mAbs. An IL-1β-activated endothelial layer formed by a murine glomerular cell line (glEND.2) was used to assay the interaction with human leukocytes in vitro. Electromobility shift and luciferase reporter gene assays permitted the analysis of cytokine-induced activation of the NF-κB pathway. Fluorescence-activated cell sorting was applied to determine endothelial E-selectin expression. Leukocyte rolling and firm adhesion to the synovial endothelium in an early response to the anti-CII antibody transfer were significantly decreased in ALP-pretreated mice. Concomitantly, ALP suppressed the IL-1β-induced NF-κB activation and the upregulation of E-selectin expression in glEND.2 cells in vitro. These findings support the notion that the newly uncovered properties of ALP to interfere with cytokine signalling and upregulation of adhesion molecules in endothelial cells are likely to contribute to the therapeutic potential of ALP in immune-complex-induced tissue injury.