Refine
Year of publication
- 2004 (2)
Document Type
- Article (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
Institute
- Biowissenschaften (2)
- MPI für Biophysik (1)
Das Epsilon-Proteobakterium Wolinella succinogenes wächst unter anaeroben Bedingungen durch Nitrit-Atmung. Als Elektronendonoren werden Formiat oder Wasserstoff verwendet. Die terminale Reduktase der Elektronentransportkette von Formiat zu Nitrit ist der Cytochrom C-Nitrit-Reduktase-Komplex (NrfHA), welcher die Reduktion von Nitrit zu Ammonium katalysiert. Menachinon dient als Redoxmediator. Die katalytische Untereinheit NrfA ist ein Pentahäm Cytochrom c, dessen Struktur bekannt ist. Die Häm c-Gruppe im aktiven Zentrum von NrfA wird über ein ungewöhnliches CXXCK-Motiv kovalent gebunden, während die übrigen vier Häm c-Gruppen über konventionelle CXXCH-Motive gebunden werden. Der Lysin-Rest des CXXCK-Motivs ist der axiale Ligand des Häm-Eisens der Häm-Gruppe im katalytischen Zentrum. Die Untereinheit NrfH ist ein membranständiges Tetcahäm-Cytochrom C, das den Elektronentransport von Menachinol zu NrfA katalysiert. Im Nitrit-Reduktase-Operon nrfHAIJ wird das Nrfl-Protein kodiert, das ähnlich zu verschiedenen Cytochrom c-Biogenese Proteinen (Ccsl und CcsA) anderer Organismen ist. Ziel dieser Arbeit war die Konstruktion und Charakterisierung von Mutanten, in denen der Lysin-Rest des CXXCK-Motivs (K134) von NrfA ausgetauscht wurde oder konservierte Aminosäure-Reste am katalytischen des NrfAProteins ausgetauscht wurden. Weiterhin wurden Mutanten konstruiert und charakterisiert, in denen das nrfl-Gen inaktiviert wurde. Folgende Ergebnisse wurden erhalten: Es wurde eine Mutante konstruiert (W. succinogenes K134H), in der das CXXCK-Motiv im aktiven Zentrum von NrfA in ein konventionelles CXXCH-Motiv gewandelt wurde. Die spezifische Nitrit-Reduktase-Aktivität, gemessen mit reduziertem Benzylviologen als Elektronendonor, betrug maximal 40% der Aktivität des Wildstammes. Die Elektronentransport-Aktivität von Formiat zu Nitrit betrug 6% der Aktivität des Wildstamms. Durch MALDI-Massenspektroskopie wurde gezeigt, dass das NrfA-Protein aus dieser Mutante, ebenso wie das Protein aus dem Wildstamm, fünf Häm-Gruppen enthielt. In W. succinogenes Mutanten, in denen der Lysin-Rest 134 gegen Leucin oder Glutamin ausgetauscht wurde, ließ sich das Nrf-Protein durch Western-Blot-Analysen nicht mehr nachweisen. 2. In W. succinogenes R114L, Y21 8F, H277L wurden konservierte Aminosäure-Reste in NrfA ausgetauscht, die nach dem postulierten Mechanismus der Nitrit-Reduktion an der heterolytischen Spaltung der ersten N-O-Bindung des Nitrits beteiligt sind. Alle diese Mutanten wachsen nicht durch Nitrit-Atmung. W. succinogenes H277L und R114L besitzen keine Nitrit-Reduktase-Aktivität, obwohl das NrfA-Protein in allen Mutanten nachweisbar war. Die Elektronentransport-Akivität von Formiat zu Nitrit in W. succinogenes Y218F betrug 6% im Vergleich zum Wildstamm und die Nitrit-Reduktase-Aktivität betrug 14% gegenüber dem Wildstamm. Aus der Struktur von W. succinogenes NrfA ist ersichtlich, dass der Glutamin-Rest 276 Teil eines Substrat-Kanals ist, der von der Oberfläche des NrfA-Proteins zur Häm-Gruppe im aktiven Zentrum führt (Einsle et al. 2000). in W. succinogenes Q276E wurde der Glutamin-Rest gegen einen negativ geladenen Glutamat-Rest ausgetauscht. W. succinogenes Q276E wächst nicht durch Nitrit-Atmung. Die Elektronentransport-Aktivität von Formiat zu Nitrit betrug in dieser Mutante 6% im Vergleich zum Wildstamm. Die Nitrit-Reduktase-Aktivität war gegenüber dem Wildstamm um 90% erniedrigt. 3. In der Mutante W. succinogenes stopl wurde das nrfl-Gen durch Einführen von zwei Stop-Codons an den Positionen 47 und 48 inaktiviert. Diese Mutante wächst nicht durch Nitrit-Atmung und besitzt keine Nitrit-Reduktase-Aktivität. Im NrfA-Protein aus W.succinogenes stopl fehlte die über das CXXCK-Motiv ligandierte Häm-Gruppe im aktiven Zentrum, während die übrigen über konventionelle CXXCH-Motive ligandierten Häm-Gruppen vorhanden waren. 4. Die Mutante W. succinogenes Kl34H/stopl, in der das stopl-Gen inaktiviert war und das CXXCK-Motiv in ein fünftes CXXCH-Motiv geändert wurde, entsprach in ihren Eigenschaften dem Stamm W. succinogenes K134H. Daraus ist zu folgern, dass das Nrfl-Protein speziell am Einbau der Häm-Gruppe am CXXCK-Motiv in NrfA beteiligt ist, während Nrfl für den Einbau an CXXCH-Motiven entbehrlich ist. Nrfl ist vermutlich eine spezielle Häm-Lyase, die den Lysin-Rest des CXXCK-Motivs erkennt. 5. Campylobacter jejuni kodiert ein NrfA-Protein, das fünf CXXCH-Motive anstelle von einem CXXCK-Motiv und vier CXXCH-Motiven enthält. In C. jejuni wird die vermutliche Häm-Gruppe des aktiven Zentrums von einem CMNCH-Motiv ligandiert, während in W. succinogenes die Bindung an einem CWTCK-Motiv erfolgt. In den Mutanten W. succinogenes CMNCK und W. succinogenes CMNCH wurde das Häm-Bindemotiv im aktiven Zentrum von NrfA dem von C. jejuni angeglichen. Keine der beiden Mutanten wuchs durch Nitrit-Atmung. W. succinogenes CMNCK katalysierte den Elektronentransport von Formiat zu Nitrit mit 6% der Aktivität des Wildstamms. Die Nitrit-Reduktase-Aktivität betrug unter 3% im Vergleich zum Wildstamm. In W. succinogenes CMNCH war das NrfA-Protein durch Western-Blot-Analysen nicht nachzuweisen. 6. Um die Präparation des NrfA-Proteins und des NrfHA-Komplexes zu erleichtern und um die Präparation der Untereinheit NrfH zu ermögiichen, wurden W, succinogenes Mutanten konstruiert, die einen Hexa-Histidin-Tag an NrfA oder einen Strep-Tag II am N- oder C-terminus von NrfH tragen. Es war aber nicht möglich, den Nitrit-Reduktase-Komplex oder einzelne Untereinheiten durch entsprechende Affinitätschromatographien anzureichern.
The majority of bacterial membrane-bound NiFe-hydrogenases and formate dehydrogenases have homologous membrane-integral cytochrome b subunits. The prototypic NiFe-hydrogenase of Wolinella succinogenes (HydABC complex) catalyzes H2 oxidation by menaquinone during anaerobic respiration and contains a membrane-integral cytochrome b subunit (HydC) that carries the menaquinone reduction site. Using the crystal structure of the homologous FdnI subunit of Escherichia coli formate dehydrogenase-N as a model, the HydC protein was modified to examine residues thought to be involved in menaquinone binding. Variant HydABC complexes were produced in W. succinogenes, and several conserved HydC residues were identified that are essential for growth with H2 as electron donor and for quinone reduction by H2. Modification of HydC with a C-terminal Strep-tag II enabled one-step purification of the HydABC complex by Strep-Tactin affinity chromatography. The tagged HydC, separated from HydAB by isoelectric focusing, was shown to contain 1.9 mol of heme b/mol of HydC demonstrating that HydC ligates both heme b groups. The four histidine residues predicted as axial heme b ligands were individually replaced by alanine in Strep-tagged HydC. Replacement of either histidine ligand of the heme b group proximal to HydAB led to HydABC preparations that contained only one heme b group. This remaining heme b could be completely reduced by quinone supporting the view that the menaquinone reduction site is located near the distal heme b group. The results indicate that both heme b groups are involved in electron transport and that the architecture of the menaquinone reduction site near the cytoplasmic side of the membrane is similar to that proposed for E. coli FdnI.