Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Pulsed electron–electron double resonance (PELDOR) spectroscopy is a powerful tool for measuring nanometer distances in spin-labeled systems and recently is increasingly applied to membrane proteins. However, after reconstitution of labeled proteins into liposomes, spin labels often exhibit a much faster transversal relaxation (Tm) than in detergent micelles, thus limiting application of the method in lipid bilayers. In the first part of the thesis, optimization of transversal relaxation in phospholipid membranes was systematically investigated by use of spin-labeled derivatives of stearic acid and phosphatidylcholine as well as spin-labeled derivatives of the channel-forming peptide gramicidin A under the conditions typically employed for PELDOR distance measurements. Our results clearly show that dephasing due to instantaneous diffusion that depends on dipolar interaction among electron spins is an important contributor to the fast echo decay in cases of high local concentrations of spin labels in membranes. The main difference between spin labels in detergent micelles and membranes is their local concentration. Consequently, avoiding spin aggregation and suppressing instantaneous diffusion is the key step for maximizing PELDOR sensitivity in lipid membranes. Even though proton spin diffusion is an important relaxation mechanism, only in samples with low local concentrations does deuteration of acyl chains and buffer significantly prolong Tm. In these cases, values of up to 7 μs have been achieved. Furthermore, our study revealed that membrane composition and labeling position in the membrane can also affect Tm, either by promoting the segregation of spin-labeled species or by altering their exposure to matrix protons. Effects of other experimental parameters including temperature (<50 K), presence of oxygen, and cryoprotectant type are negligible under our experimental conditions.
In the second part of the thesis, inhomogeneous distribution of spin-labels in detergent micelles has been studied. A common approach in PELDOR is measuring the distance between two covalently attached spin labels in a macromolecule or singly-labeled components of an oligomer. This situation has been described as a spin-cluster. The PELDOR signal, however, does not only contain the desired dipolar coupling between the spin-labels of the molecule or cluster under study. In samples of finite concentration the dipolar coupling between the spin-labels of the randomly distributed molecules or spin-clusters also contributes significantly. In homogeneous frozen solutions or lipid vesicle membranes this second contribution can be considered to be an exponential or stretched exponential decay, respectively. In this study, it is shown that this assumption is not valid in detergent micelles. Spin-labeled fatty acids that are randomly partitioned into different detergent micelles give rise to PELDOR time traces which clearly deviate from stretched exponential decays. As a main conclusion a PELDOR signal deviating from a stretched exponential decay does not necessarily prove the observation of specific distance information on the molecule or cluster. These results are important for the interpretation of PELDOR experiments on membrane proteins or lipophilic peptides solubilized in detergent micelles or small vesicles, which often do not show pronounced dipolar oscillations in their time traces.
In the third part, PELDOR has been utilized to study the structural flexibility of the Toc34 GTPase homodimer, a preprotein receptor of the translocon of the outer envelope of chloroplasts (TOC). Toc34 belongs to GAD subfamily of G-proteins that are regulated and activated by nucleotide-dependent dimerization. However, the function of Toc34 dimerization is not yet fully understood. Previous structural investigations of the Toc34 dimer yielded only marginal structural changes in response to different nucleotide loads. PELDOR revealed a nucleotide-dependent transition of the dimer flexibility from a tight GDP to a flexible GTP-loaded state. Substrate-binding stabilizes the dimer in the transition state mimicked by GDP-AlFx, but induces an opening in the GDP or GTP-loaded state. Thus, the structural dynamics of bona fide GTPases induced by GTP hydrolysis is replaced by substrate-dependent dimer flexibility, which represents the regulatory mode for dimerizing GTPases.
In the fourth part of the thesis, conformational flexibility and relative orientation of the N-terminal POTRA domains of a cyanobacterial Omp85 from Anabaena sp. PCC 7120, a key component of the outer membrane protein assembly machinery, were investigated by PELDOR spectroscopy. Membrane proteins of the Omp85-TpsB superfamily are composed of a C-terminal β-barrel and a different number of N-terminal POTRA domains, three in the case of cyanobacterial Omp85. It has been suggested that the N-terminal POTRA domains (P1 and P2) might have functions in substrate recognition. Molecular dynamics (MD) simulations predicted a fixed orientation for P2 and P3 and a flexible hinge between P1 and P2. The PELDOR distances measured between the P2 and P3 POTRA domains are in good agreement with the structure determined by X-ray, and compatible with the MD simulations suggesting a fixed orientation between these domains. PELDOR constraints between the P1 and P2 POTRA domains imply a rather rigid structure with a slightly different relative orientation of these domains compared with the X-ray structure. Moreover, the large mobility predicted from MD is not observed in the frozen solution. The PELDOR results further highlight the restricted relative orientation of the POTRA domains of the Omp85-TpsB proteins as a conserved characteristic feature that might be important for the processive sliding of the unfolded substrate towards the membrane.
Relative orientation of POTRA domains from cyanobacterial Omp85 studied by pulsed EPR spectroscopy
(2016)
Many proteins of the outer membrane of Gram-negative bacteria and of the outer envelope of the endosymbiotically derived organelles mitochondria and plastids have a β-barrel fold. Their insertion is assisted by membrane proteins of the Omp85-TpsB superfamily. These proteins are composed of a C-terminal β-barrel and a different number of N-terminal POTRA domains, three in the case of cyanobacterial Omp85. Based on structural studies of Omp85 proteins, including the five POTRA-domain-containing BamA protein of Escherichia coli, it is predicted that anaP2 and anaP3 bear a fixed orientation, whereas anaP1 and anaP2 are connected via a flexible hinge. We challenged this proposal by investigating the conformational space of the N-terminal POTRA domains of Omp85 from the cyanobacterium Anabaena sp. PCC 7120 using pulsed electron-electron double resonance (PELDOR, or DEER) spectroscopy. The pronounced dipolar oscillations observed for most of the double spin-labeled positions indicate a rather rigid orientation of the POTRA domains in frozen liquid solution. Based on the PELDOR distance data, structure refinement of the POTRA domains was performed taking two different approaches: 1) treating the individual POTRA domains as rigid bodies; and 2) using an all-atom refinement of the structure. Both refinement approaches yielded ensembles of model structures that are more restricted compared to the conformational ensemble obtained by molecular dynamics simulations, with only a slightly different orientation of N-terminal POTRA domains anaP1 and anaP2 compared with the x-ray structure. The results are discussed in the context of the native environment of the POTRA domains in the periplasm.