Refine
Language
- English (81)
Has Fulltext
- yes (81)
Is part of the Bibliography
- no (81)
Keywords
Institute
We report a systematic measurement of cumulants, Cn, for net-proton, proton and antiproton multiplicity distributions, and correlation functions, κn, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at sNN−−−√ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The Cn and κn are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, y, and transverse momentum, pT. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the BNL Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity (|y|< 0.5) and transverse momentum 0.4 < pT < 2.0 GeV/c, using the STAR detector at RHIC. We observe a non-monotonic energy dependence (sNN−−−√ = 7.7 -- 62.4 GeV) of the net-proton C4/C2 with the significance of 3.1σ for the 0-5\% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with sNN−−−√. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, κ2, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, κ4, of protons plays a role in determining the energy dependence of proton C4/C1 below 19.6 GeV, which cannot be understood by the effect of baryon number conservation.
We report a systematic measurement of cumulants, Cn, for net-proton, proton and antiproton, and correlation functions, κn, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at sNN−−−√ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The Cn and κn are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, y, and transverse momentum, pT. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity (|y|< 0.5) and transverse momentum 0.4 < pT < 2.0 GeV/c, using the STAR detector at RHIC. We observe a non-monotonic energy dependence (sNN−−−√ = 7.7 -- 62.4 GeV) of the net-proton C4/C2 with the significance of 3.1σ for the 0-5\% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with sNN−−−√. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, κ2, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, κ4, of protons plays a role in determining the energy dependence of proton C4/C1 below 19.6 GeV, which cannot be solely understood by the negative values of κ2 for protons.
We present the first inclusive measurements of the invariant and SoftDrop jet mass in proton-proton collisions at s√=200 GeV at STAR. The measurements are fully corrected for detector effects, and reported differentially in both the jet transverse momentum and jet radius parameter. We compare the measurements to established leading-order Monte Carlo event generators and find that STAR-tuned PYTHIA-6 reproduces the data, while LHC tunes of PYTHIA-8 and HERWIG-7 do not agree with the data, providing further constraints on parameter tuning. Finally, we observe that SoftDrop grooming, for which the contribution of wide-angle non-perturbative radiation is suppressed, shifts the jet mass distributions into closer agreement with the partonic jet mass as determined by both PYTHIA-8 and a next-to-leading-logarithmic accuracy perturbative QCD calculation. These measurements complement recent LHC measurements in a different kinematic region, as well as establish a baseline for future jet mass measurements in heavy-ion collisions at RHIC.
We report high-precision measurements of the longitudinal double-spin asymmetry, 𝐴𝐿𝐿, for midrapidity inclusive jet and dijet production in polarized 𝑝𝑝 collisions at a center-of-mass energy of √𝑠=200 GeV. The new inclusive jet data are sensitive to the gluon helicity distribution, Δ𝑔(𝑥,𝑄2), for gluon momentum fractions in the range from 𝑥≃0.05 to 𝑥≃0.5, while the new dijet data provide further constraints on the 𝑥 dependence of Δ𝑔(𝑥,𝑄2). The results are in good agreement with previous measurements at √𝑠=200 GeV and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that Δ𝑔(𝑥,𝑄2) is positive for 𝑥>0.05.
Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of J/ψ photoproduction off the deuteron in UPCs at the center-of-mass energy sNN−−−√=200 GeV in d+Au collisions. The differential cross section as a function of momentum transfer −t is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.
Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of J/ψ photoproduction off the deuteron in UPCs at the center-of-mass energy sNN−−−√=200 GeV in d+Au collisions. The differential cross section as a function of momentum transfer −t is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.
We report precision measurements of hypernuclei 3ΛH and 4ΛH lifetimes obtained from Au+Au collisions at \snn = 3.0\,GeV and 7.2\,GeV collected by the STAR experiment at RHIC, and the first measurement of 3ΛH and 4ΛH mid-rapidity yields in Au+Au collisions at \snn = 3.0\,GeV. The lifetimes are measured to be 221±15(stat.)±19(syst.)\,ps for 3ΛH and 218±6(stat.)±13(syst.)\,ps for 4ΛH. The pT-integrated yields of 3ΛH and 4ΛH are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of 4ΛH is different for 0--10\% and 10--50\% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the 3ΛH yield well, while underestimating the 4ΛH yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured 3ΛH and 4ΛH yields.
We report precision measurements of hypernuclei 3ΛH and 4ΛH lifetimes obtained from Au+Au collisions at \snn = 3.0\,GeV and 7.2\,GeV collected by the STAR experiment at RHIC, and the first measurement of 3ΛH and 4ΛH mid-rapidity yields in Au+Au collisions at \snn = 3.0\,GeV. 3ΛH and 4ΛH, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be 221±15(stat.)±19(syst.)\,ps for 3ΛH and 218±6(stat.)±13(syst.)\,ps for 4ΛH. The pT-integrated yields of 3ΛH and 4ΛH are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of 4ΛH is different for 0--10\% and 10--50\% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the 3ΛH yield well, while underestimating the 4ΛH yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured 3ΛH and 4ΛH yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.
We report precision measurements of hypernuclei 3ΛH and 4ΛH lifetimes obtained from Au+Au collisions at \snn = 3.0\,GeV and 7.2\,GeV collected by the STAR experiment at RHIC, and the first measurement of 3ΛH and 4ΛH mid-rapidity yields in Au+Au collisions at \snn = 3.0\,GeV. 3ΛH and 4ΛH, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be 221±15(stat.)±19(syst.)\,ps for 3ΛH and 218±6(stat.)±13(syst.)\,ps for 4ΛH. The pT-integrated yields of 3ΛH and 4ΛH are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of 4ΛH is different for 0--10\% and 10--50\% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the 3ΛH yield well, while underestimating the 4ΛH yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured 3ΛH and 4ΛH yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.
We report a new measurement of the production cross section for inclusive electrons from open heavy-flavor hadron decays as a function of transverse momentum (pT) at mid-rapidity (|y|< 0.7) in p+p collisions at s√=200 GeV. The result is presented for 2.5 <pT< 10 GeV/c with an improved precision at high pT with respect to the previous measurements, and thus provides a better constraint on perturbative QCD calculations. Moreover, this measurement also provides a high-precision reference for measurements of nuclear modification factors for inclusive electrons from open-charm and -bottom hadron decays in heavy-ion collisions.